Ernesto Pérez-Rueda

Learn More
RegulonDB is a database on transcription regulation and operon organization in Escherichia coli. The current version describes regulatory signals of transcription initiation, promoters, regulatory binding sites of specific regulators, ribosome binding sites and terminators, as well as information on genes clustered in operons. These specific annotations(More)
Because a large number of molecular mechanisms involved in gene regulation have been described during the last decades, it is now becoming possible to address questions about the global structure of gene regulatory networks, at least in the case of some of the best-characterized organisms. This paper presents a global characterization of the transcriptional(More)
Using a combination of several approaches we estimated and characterized a total of 314 regulatory DNA-binding proteins in Escherichia coli, which might represent its minimal set of transcription factors. The collection is comprised of 35% activators, 43% repressors and 22% dual regulators. Within many regulatory protein families, the members are(More)
The AraC/XylS family of transcription factors, which include proteins that are involved in the regulation of diverse biological processes, has been of considerable interest recently and has been constantly expanding by means of in silico predictions and experimental analysis. In this work, using a HMM based on the DNA binding domain of 58 experimentally(More)
It has been documented that bacteria from the Burkholderia genera produce different kinds of compounds that inhibit plant pathogens, however in Burkholderia tropica, an endophytic diazotrophic and phosphate-solubilizing bacterium isolated from a wide diversity of plants, the capacity to produce antifungal compounds has not been evaluated. In order to expand(More)
Archaea, which represent a large fraction of the phylogenetic diversity of organisms, are prokaryotes with eukaryote-like basal transcriptional machinery. This organization makes the study of their DNA-binding transcription factors (TFs) and their transcriptional regulatory networks particularly interesting. In addition, there are limited experimental data(More)
Position analyses have been devised to extract additional transcriptional information from rapidly expanding genomic data bases. The locations of promoter regulatory sites and also the locations of transcription factor DNA-binding domains are analyzed. Strongly preferred positions of activator binding sites occur in both Escherichia coli and eukaryotes,(More)
Regulatory proteins in Escherichia coli with a helix–turn–helix (HTH) DNA binding motif show a position–function correlation such that repressors have this motif predominantly at the N terminus, whereas activators have the motif at the C-terminus extreme. Using this initial collection we identified by sequence comparison the exhaustive set of(More)
Bacillus subtilis is one of the best-characterized organisms in Gram-positive bacteria. It represents a paradigm of gene regulation in bacteria due its complex life style (which could involve a transition between stages as diverse as vegetative cell and spore formation). In order to gain insight into the organization and evolution of the B. subtilis(More)
Rhizobia are a group of bacteria that form nodules on the roots of legume host plants. The sequenced genomes of the rhizobia are characterized by the presence of many putative insertion sequences (IS) elements. However, it is unknown whether these IS elements are functional and it is therefore relevant to assess their transposition activity. In this work,(More)