Learn More
RegulonDB is a database on transcription regulation and operon organization in Escherichia coli. The current version describes regulatory signals of transcription initiation, promoters, regulatory binding sites of specific regulators, ribosome binding sites and terminators, as well as information on genes clustered in operons. These specific annotations(More)
Using a combination of several approaches we estimated and characterized a total of 314 regulatory DNA-binding proteins in Escherichia coli, which might represent its minimal set of transcription factors. The collection is comprised of 35% activators, 43% repressors and 22% dual regulators. Within many regulatory protein families, the members are(More)
Because a large number of molecular mechanisms involved in gene regulation have been described during the last decades, it is now becoming possible to address questions about the global structure of gene regulatory networks, at least in the case of some of the best-characterized organisms. This paper presents a global characterization of the transcriptional(More)
Regulatory proteins in Escherichia coli with a helix-turn-helix (HTH) DNA binding motif show a position-function correlation such that repressors have this motif predominantly at the N terminus, whereas activators have the motif at the C-terminus extreme. Using this initial collection we identified by sequence comparison the exhaustive set of(More)
The AraC/XylS family of transcription factors, which include proteins that are involved in the regulation of diverse biological processes, has been of considerable interest recently and has been constantly expanding by means of in silico predictions and experimental analysis. In this work, using a HMM based on the DNA binding domain of 58 experimentally(More)
Expansins are a family of proteins with plant cell wall remodeling-activity, which bind cell wall components through hydrophobic and electrostatic interactions. A shallow area on the surface of the protein serves as the polysaccharide binding site (PBS) and it is composed of conserved residues. However, electric charge differences on the opposite face of(More)
BACKGROUND Bacillus subtilis is one of the best-characterized organisms in Gram-positive bacteria. It represents a paradigm of gene regulation in bacteria due its complex life style (which could involve a transition between stages as diverse as vegetative cell and spore formation). In order to gain insight into the organization and evolution of the B.(More)
It has been documented that bacteria from the Burkholderia genera produce different kinds of compounds that inhibit plant pathogens, however in Burkholderia tropica, an endophytic diazotrophic and phosphate-solubilizing bacterium isolated from a wide diversity of plants, the capacity to produce antifungal compounds has not been evaluated. In order to expand(More)
We have addressed the distribution and abundance of 75 transcription factor (TF) families in complete genomes from 90 different bacterial and archaeal species. We found that the proportion of TFs increases with genome size. The deficit of TFs in some genomes might be compensated by the presence of proteins organizing and compacting DNA, such as histone-like(More)
Archaea, which represent a large fraction of the phylogenetic diversity of organisms, are prokaryotes with eukaryote-like basal transcriptional machinery. This organization makes the study of their DNA-binding transcription factors (TFs) and their transcriptional regulatory networks particularly interesting. In addition, there are limited experimental data(More)