Ernesto Liñán García

Learn More
The galU gene of Streptococcus pneumoniae has been cloned and sequenced. Escherichia coli cells harboring the recombinant plasmid pMMG2 (galU) overproduced a protein that has been shown to correspond to a uridine 5'-triphosphate:glucose-1-phosphate uridylyltransferase (uridine diphosphoglucose [UDP-Glc] pyrophosphorylase) responsible for the synthesis of(More)
Streptococcus pneumoniae is an important human pathogen that often carries temperate bacteriophages. As part of a program to characterize the genetic makeup of prophages associated with clinical strains and to assess the potential roles that they play in the biology and pathogenesis in their host, we performed comparative genomic analysis of 10 temperate(More)
The molecular aspects of the type 37 pneumococcal capsular biosynthesis, a homopolysaccharide composed of sophorosyl units (beta-d-Glc-(1-->2)-beta-d-Glc) linked by beta-1,3 bonds, have been studied. Remarkably, the biosynthesis of the type 37 capsule is driven by a single gene (tts) located far apart from the cap locus responsible for capsular formation in(More)
Biofilm-grown bacteria are refractory to antimicrobial agents and show an increased capacity to evade the host immune system. In recent years, studies have begun on biofilm formation by Streptococcus pneumoniae, an important human pathogen, using a variety of in vitro model systems. The bacterial cells in these biofilms are held together by an extracellular(More)
BACKGROUND Streptococcus pneumoniae is a common colonizer of the human nasopharynx and one of the major pathogens causing invasive disease worldwide. Dissection of the molecular pathways responsible for colonization, invasion, and evasion of the immune system will provide new targets for antimicrobial or vaccine therapies for this common pathogen. (More)
BACKGROUND Specific antibodies are likely to be present before S. pneumoniae infection. We explored cefditoren (CDN) total and free values of serum concentrations exceeding the MIC (t>MIC) related to efficacy in a mice sepsis model, and the effect of specific gammaglobulins on in-vitro phagocytosis and in-vivo efficacy. METHODOLOGY/PRINCIPAL FINDINGS We(More)
The polysaccharide capsule of Streptococcus pneumoniae is the main virulence factor, which makes the bacterium resistant to phagocytosis. Expression of capsular polysaccharide must be adjusted at different stages of pneumococcal infection, thus, their transcriptional regulation appears to be crucial. To get insight into the existence of regulatory(More)
Endolysins comprise a novel class of selective antibacterials refractory to develop resistances. The Cpl-7 endolysin, encoded by the Streptococcus pneumoniae bacteriophage Cp-7, consists of a catalytic module (CM) with muramidase activity and a cell wall-binding module (CWBM) made of three fully conserved CW_7 repeats essential for activity. Firstly(More)
Since 2004, a total of 131 isolates of Streptococcus pneumoniae multidrug-resistant invasive serotype 8 have been detected in Spain. These isolates showed resistance to erythromycin, clindamycin, tetracycline, and ciprofloxacin. All isolates were obtained from adult patients and shared a common genotype (sequence type [ST]63; penicillin-binding protein 1a(More)
Streptococcus pneumoniae (pneumococcus) is a major human pathogen. The main pneumococcal autolysin LytA and the pneumolysin Ply are two of the bacterium's most important virulence factors. The lytA- and ply-related genes are also found in other streptococci of the Mitis group (SMG). The precise characteristics of the lytA-related-but not the(More)