#### Filter Results:

#### Publication Year

1992

2013

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

- Michele Frigerio, Thomas Hambye, Ernest Ma
- 2006

Instead of creating the observed baryon asymmetry of the universe by the decay of right-handed (RH) neutrinos to left-handed leptons, we propose to generate it dominantly by the decay of the RH neutrinos to RH leptons. This mechanism turns out to be successful in large regions of parameter space. It may work, in particular, at a scale as low as ∼ TeV, with… (More)

- Ernest Ma
- 2008

A minimal extension of the Standard Model is proposed, where the observed left-handed neutrinos obtain naturally small Majorana masses from a one-loop radiative seesaw mechanism. This model has two candidates (one bosonic and one fermionic) for the dark matter of the Universe. It has a very simple structure and should be verifiable in forthcoming… (More)

- Ernest Ma, Utpal Sarkar
- 1998

A simple and economical extension of the minimal standard electroweak gauge model (without right-handed neutrinos) by the addition of two heavy Higgs scalar triplets would have two significant advantages. Naturally small Majorana neutrino masses would become possible, as well as leptogenesis in the early universe which gets converted at the electroweak… (More)

The discrete non-Abelian symmetry A 4 , valid at some high-energy scale, naturally leads to degenerate neutrino masses, without spoiling the hierarchy of charged-lepton masses. Realistic neutrino mass splittings and mixing angles (one of which is necessarily maximal and the other large) are then induced radiatively in the context of softly broken… (More)

If the generating mechanism for neutrino mass is to account for both the newly observed muon anomalous magnetic moment as well as the present experimental bounds on lepton flavor nonconservation, then the neutrino mass matrix should be almost degenerate and the underlying physics should be observable at future colliders. We illustrate this assertion with… (More)

- Ernest Ma, G Rajasekaran
- 2001

The leptonic Higgs doublet model of neutrino masses is implemented with an A 4 discrete symmetry (the even permutation of 4 objects or equivalently the symmetry of the tetrahedron) which has 4 irreducible representations: 1, 1 ′ , 1 ′′ , and 3. The resulting spontaneous and soft breaking of A 4 provides a realistic model of charged-lepton masses as well as… (More)

- Ernest Ma
- 2008

I review some of the recent progress (up to September 2005) in applying non-Abelian discrete symmetries to the family structure of leptons, with particular emphasis on the tribimaximal mixing ansatz of Harrison, Perkins, and Scott.

- Ernest Ma, Hideyuki Sawanaka, Morimitsu Tanimoto
- 2006

The successful A 4 family symmetry for leptons is applied to quarks, motivated by the quark-lepton assignments of SU(5). Realistic quark masses and mixing angles are obtained, in good agreement with data. In particular, we find a strong correlation between |V ub | and the CP phase β, thus allowing for a decisive future test of this model.

- Ernest Ma
- 2002

If the standard model of quark interactions is supplemented by a discrete A 4 symmetry (which may be relevant for the lepton sector), the spontaneous breaking of the electroweak gauge symmetry allows arbitrary quark masses, but all mixing angles are predicted to be zero. A pattern of the explicit breaking of A 4 is proposed, which results in a realistic… (More)

- Ernest Ma
- 1998

In the minimal standard electroweak gauge model, there is an effective dimension-five operator which generates neutrino masses. I show that there are three tree-level realizations of this operator. One is the canonical seesaw mechanism with a right-handed neutrino. Another is having a heavy Higgs triplet as recently proposed. The third possibility is to… (More)