Learn More
The Otx2 gene, containing a highly conserved paired-type homeobox, plays a pivotal role in the development of the rostral head throughout vertebrates. Precise regulation of the temporal and spatial expression of Otx2 is likely to be crucial for proper head specification. However, regulatory mechanisms of Otx2 expression remain largely unknown. In this(More)
How autophagy, an evolutionarily conserved intracellular catabolic system for bulk degradation, selectively degrades protein aggregates is poorly understood. Here, we show that several maternally derived germ P granule components are selectively eliminated by autophagy in somatic cells during C. elegans embryogenesis. The activity of sepa-1 is required for(More)
The molecular understanding of autophagy has originated almost exclusively from yeast genetic studies. Little is known about essential autophagy components specific to higher eukaryotes. Here we perform genetic screens in C. elegans and identify four metazoan-specific autophagy genes, named epg-2, -3, -4, and -5. Genetic analysis reveals that epg-2, -3, -4,(More)
Previous analysis employing chimeric and transgenic rescue experiments has suggested that Otx2 is required in the neuroectoderm for development of the forebrain region. In order to elucidate the precise role of Otx2 in forebrain development, we attempted to generate an allelic series of Otx2 mutations by Flp- and Cre-mediated recombination for the(More)
The molecular mechanisms underlying the formation of neurons with defined neurotransmitters are not well understood. In this study, we demonstrate that the PcG-like genes in Caenorhabditis elegans, sop-2 and sor-3, regulate the formation of dopaminergic and serotonergic neurons and several other neuronal properties. sor-3 encodes a novel protein containing(More)
Stem cells undergo symmetric and asymmetric division to maintain the dynamic equilibrium of the stem cell pool and also to generate a variety of differentiated cells. The homeostatic mechanism controlling the choice between self-renewal and differentiation of stem cells is poorly understood. We show here that ceh-16, encoding the C. elegans ortholog of the(More)
Reciprocal chromosomal translocations, which are mediated by errors in immunoglobulin heavy chain (IgH) switch recombination or somatic hypermutation as plasma cells are generated in germinal centers, are present in most multiple myeloma (MM) tumors. These translocations dysregulate an oncogene that is repositioned in proximity to a strong IgH enhancer.(More)
High-grade ovarian serous papillary cancer (OSPC) and uterine serous papillary carcinoma (USPC) represent two histologically similar malignancies characterised by markedly different biological behavior and response to chemotherapy. Understanding the molecular basis of these differences may significantly refine differential diagnosis and management, and may(More)
Alterations in checkpoint and DNA repair pathways may provide adaptive mechanisms contributing to acquired drug resistance. Here, we investigated the levels of proteins mediating DNA damage signaling and -repair in RPMI8226 multiple myeloma cells and its Melphalan-resistant derivative 8226-LR5. We observed markedly reduced steady-state levels of DNA(More)
OBJECTIVES Hepatocyte growth factor (HGF) is a constituent of the myeloma microenvironment and is elevated in sera from myeloma patients compared to healthy individuals. Increased levels of serum HGF predict a poor prognosis. It has previously been shown by us and others HGF can act as a growth factor to myeloma cells in vitro although these effects have(More)