Erlendur Helgason

Learn More
Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are members of the Bacillus cereus group of bacteria, demonstrating widely different phenotypes and pathological effects. B. anthracis causes the acute fatal disease anthrax and is a potential biological weapon due to its high toxicity. B. thuringiensis produces intracellular protein crystals(More)
Bacillus anthracis is an endospore-forming bacterium that causes inhalational anthrax. Key virulence genes are found on plasmids (extra-chromosomal, circular, double-stranded DNA molecules) pXO1 (ref. 2) and pXO2 (ref. 3). To identify additional genes that might contribute to virulence, we analysed the complete sequence of the chromosome of B. anthracis(More)
In this study we developed a multilocus sequence typing (MLST) scheme for bacteria of the Bacillus cereus group. This group, which includes the species B. cereus, B. thuringiensis, B. weihenstephanensis, and B. anthracis, is known to be genetically very diverse. It is also very important because it comprises pathogenic organisms as well as bacteria with(More)
We sequenced the complete genome of Bacillus cereus ATCC 10987, a non-lethal dairy isolate in the same genetic subgroup as Bacillus anthracis. Comparison of the chromosomes demonstrated that B.cereus ATCC 10987 was more similar to B.anthracis Ames than B.cereus ATCC 14579, while containing a number of unique metabolic capabilities such as urease and xylose(More)
The genetic diversity and relationships among 35 Bacillus cereus and Bacillus thuringiensis isolates recovered from marginal and apical periodontitis in humans and from various other human infections were investigated using multilocus enzyme electrophoresis. The strains were isolated in Norway, except for three strains isolated from periodontitis patients(More)
The Bacillus cereus group of bacteria includes species that can cause food-poisoning or spoilage, such as B. cereus, as well as Bacillus anthracis, the cause of anthrax. In the present report we have conducted a multi-datatype analysis using tools from the HyperCAT database ( that we recently developed, combining data from multilocus(More)
AIMS To provide new insights into the population and genomic structure of the Bacillus cereus group of bacteria. METHODS AND RESULTS The genetic relatedness among B. cereus group strains was assessed by multilocus sequence typing (MLST) using an optimized scheme based on seven chromosomal housekeeping genes. A set of 48 strains from different clinical(More)
The genetic diversity and relationships among 154 Bacillus cereus/B. thuringiensis isolates recovered from soil samples from five geographic areas in Norway were investigated with multilocus enzyme electrophoresis (MEE). Cluster analysis revealed two major groups (designated cluster I and cluster II) separated at genetic distance greater than 0.55. Cluster(More)
  • 1