Learn More
We introduce a novel fast algorithm for Independent Component Analysis, which can be used for blind source separation and feature extraction. It is shown how a neural network learning rule can be transformed into a xed-point iteration, which provides an algorithm that is very simple, does not depend on any user-deened parameters, and is fast to converge to(More)
It is shown that frequency sensitive competitive learning (FSCL), one version of the recently improved competitive learning (CL) algorithms, significantly deteriorates in performance when the number of units is inappropriately selected. An algorithm called rival penalized competitive learning (RPCL) is proposed. In this algorithm, not only is the winner(More)
Independent component analysis (ICA) aims at extracting unknown hidden factors/components from multivariate data using only the assumption that the unknown factors are mutually independent. Since the introduction of ICA concepts in the early 1980s in the context of neural networks and array signal processing, many new successful algorithms have been(More)
Multichannel recordings of the electromagnetic fields emerging from neural currents in the brain generate large amounts of data. Suitable feature extraction methods are, therefore, useful to facilitate the representation and interpretation of the data. Recently developed independent component analysis (ICA) has been shown to be an efficient tool for(More)
Imagine that you are in a room where two people are speaking simultaneously You have two microphones which you hold in di erent locations The microphones give you two recorded time signals which we could denote by x t and x t with x and x the amplitudes and t the time index Each of these recorded signals is a weighted sum of the speech signals emitted by(More)
A number of neural learning rules have been recently proposed for Independent Component Analysis (ICA). The rules are usually derived from information-theoretic criteria such as maximum entropy or minimum mutual information. In this paper, we show that in fact, ICA can be performed by very simple Hebbian or anti-Hebbian learning rules, which may have only(More)