Erin L Schmidt

Learn More
Fluorescent antibodies (FAs) prepared against 16 ammonia-oxidizing nitrifying bacteria were examined as to cross-reactivity in heterologous FA staining tests. Virtually all cross-reactions to the seven Nitrosomonas FAs were confined to the Nitrosomonas isolates. The five Nitrosospira, three Nitrosolobus, and one Nitrosovibrio FAs stained isolates only(More)
Five strains of Nitrosomonas and one each of Nitrosospira and Nitrosolobus were examined for sensitivity to the nitrification inhibitor nitrapyrin. Considerable variation in sensitivity was observed, with some strains about five times more resistant than others. Sensitivity to nitrapyrin varied more with strain than with genus.
Transfer of the pea (Pisum sativum L.) symbiotic plasmid pJB5JI between strains of rhizobia was examined in sterile and nonsterile silt loam soil. Sinorhizobium fredii USDA 201 and HH003 were used as plasmid donors, and symbiotic plasmid-cured Rhizobium leguminosarum 6015 was used as the recipient. The plasmid was carried but not expressed in S. fredii(More)
A lectin has been isolated from the roots of 5-day soybean (Glycine max (L) cultivar Chippewa) seedlings, and its properties have been compared to those of the soybean seed lectin. The sugar-binding activities of the two lectins, both in terms of specific hemagglutinating activity and sugar specificity, are indistinguishable. Molecular properties of the two(More)
Two physiologically and serologically distinct strains of chemoautotrophic nitrite-oxidizing bacteria were isolated as numerically predominant members of the nitrite-oxidizer population of an undisturbed forest soil with a pH range of 4.3 to 5.2. One isolate responded as a neutrophile, characteristic of the family Nitrobacteraceae, and cross-reacted(More)
Rhizosphere response was studied as a factor in competition among indigenous Rhizobium japonicum serogroups for the nodulation of soybeans under field conditions. R. japonicum serogroups 110, 123, and 138 were found to coexist in a Waukegan field soil where they were determined to be the major nodulating rhizobia in soybean nodules. Competitive(More)
Soybean lectin labeled with fluorescein isothiocyanate combined specifically with all but 3 of 25 strains of the soybean-nodulating bacterium Rhizobium japonicum. The lectin did not bind to any of 23 other strains representative of rhizobia that do not nodulate soybeans. The evidence suggests that an interaction between legume lectins and Rhizobium cells(More)
Multiple genera of ammonia-oxidizing chemoautotrophic nitrifiers in a soil were detected, isolated, and studied by means of modified most-probable-number (MPN) techniques. The soil examined was a Waukegon silt loam treated with ammonium nitrate or sewage effluent. The genera Nitrosomonas and Nitrosospira were found to occur more commonly than the genus(More)