Learn More
BACKGROUND Artificial boundaries on a map occur when the map extent does not cover the entire area of study; edges on the map do not exist on the ground. These artificial boundaries might bias the results of animal dispersal models by creating artificial barriers to movement for model organisms where there are no barriers for real organisms. Here, we(More)
Landscape genetic analyses assess the influence of landscape structure on genetic differentiation. It is rarely possible to collect genetic samples from all individuals on the landscape and thus it is important to assess the sensitivity of landscape genetic analyses to the effects of unsampled and under-sampled sites. Network-based measures of genetic(More)
A cost or resistance surface is a representation of a landscape's permeability to animal movement or gene flow and is a tool for measuring functional connectivity in landscape ecology and genetics studies. Parameterizing cost surfaces by assigning weights to different landscape elements has been challenging however, because true costs are rarely known;(More)
The amount and extent of dispersal can have a large effect on the evolutionary trajectory, dynamics and structure of populations. Thus, understanding patterns of genetic structure provide information about the needs and approaches for population management and species conservation. To date studies addressing the population structure of Canada lynx (Lynx(More)
Landscape heterogeneity can influence animal dispersal by causing a directional bias in dispersal rate, as certain landscape configurations might promote, impede, or prevent movement and gene flow. In forested landscapes, logging operations often contribute to heterogeneity that can reduce functional connectivity for some species. American martens (Martes(More)
In the flight muscles of European bumblebees, high activities of fructose-1,6-bisphosphatase (FbPase) relative to phosphofructokinase (PFK) have suggested a thermogenic 'futile cycle' important for regional endothermy. We find generally low activities of FbPase (0.7-19.7 units g(-1) thorax) in North American Bombus species, with the exception of Bombus(More)
Anthropogenically driven climatic change is expected to reshape global patterns of species distribution and abundance. Given recent links between genetic variation and environmental patterns, climate change may similarly impact genetic population structure, but we lack information on the spatial and mechanistic underpinnings of genetic-climate associations.(More)
At-site environmental conditions can have strong influences on genetic connectivity, and in particular on the immigration and settlement phases of dispersal. However, at-site processes are rarely explored in landscape genetic analyses. Networks can facilitate the study of at-site processes, where network nodes are used to model site-level effects. We used(More)
Intraspecific social behavior can be influenced by both intrinsic and extrinsic factors. While much research has focused on how characteristics of individuals influence their roles in social networks, we were interested in the role that landscape structure plays in animal sociality at both individual (local) and population (global) levels. We used female(More)
Barriers to dispersal influence the ability of individuals to expand into new areas and can ultimately define success of reintroduction programs. American marten (Martes americana) were reintroduced to the Upper Peninsula of Michigan, USA, from multiple, genetically differentiated source populations from 1955 to 1992. Previous research found multiple(More)