Erika Svangård

Learn More
A crude fraction of Viola tricolor rich in small lipophilic proteins was prepared and subjected to fractionation guided by bioactivity, using RP-HPLC and a fluorometric cytotoxicity assay. Two human cancer cell lines, U-937 GTB (lymphoma) and RPMI-8226/s (myeloma), were used in this study. The most potent compounds isolated, that is, the compounds showing(More)
Two polypeptides named vodo M and vodo N, both of 29 amino acids, have been isolated from Viola odorata L. (Violaceae) using ion exchange chromatography and reversed phase HPLC. The sequences were determined by automated Edman degradation, quantitative amino acid analysis, and mass spectrometry (MS). Using MS, it was established that vodo M(More)
Cyclotides are cyclic plant proteins with potent cytotoxic effects. Here we systematically probed the importance of surface-exposed charged amino acid residues of the cyclotide cycloviolacin O2, using a strategy involving chemical modifications. We show that the single glutamic acid plays a key role for the cytotoxicity: methylation of this residue produced(More)
This review focuses on the discovery of cyclotides in the Violaceae, their isolation and their anti-cancer effects. These macrocyclic plant peptides consist of about 30 amino acids, including three conserved disulfide bonds in a cystine knotted arrangement, which renders them a remarkable stability. Their unique structure, combined with a wide array of(More)
Cyclotides, a family of approximately 50 mini-proteins isolated from various Violaceae and Rubiaceae plants, are characterized by their circular peptide backbone and six conserved cysteine residues arranged in a cystine knot motif. Cyclotides show a wide range of biological activities, making them interesting targets for both pharmaceutical and agrochemical(More)
In recent years, the cyclotides have emerged as the largest family of naturally cyclized proteins. Cyclotides display potent cytotoxic activity that varies with the structure of the proteins, and combined with their unique structure, they represent novel cytotoxic agents. However, their mechanism of action is yet unknown. In this work we show that(More)
Cycloviolacin O2, a plant peptide of the cyclotide family, is shown to have potent effects against fouling barnacles (Balanus improvisus), with complete inhibition of settlement at a concentration of 0.25 microM. The effect of cycloviolacin O2 against barnacles is reversible and nontoxic in the bioassay employed in these studies. Cycloviolacin O2 was(More)
  • 1