Erika Herrero-García

Learn More
Aspergillus nidulans switches from vegetative growth to conidiation when aerial hyphae make contact with the atmosphere, or are subjected to specific environmental stress. The activation of the central conidiation pathway led by the transcription factor brlA is a critical milestone in this morphogenetic transition. A number of upstream developmental(More)
Fungi are capable of generating diverse cell types through developmental processes that stem from hyphae, acting as pluripotent cells. The formation of mitospores on emergence of hyphae to the air involves the participation of transcription factors, which co-ordinate the genesis of new cell types, eventually leading to spore formation. In this(More)
Germination of Aspergillus nidulans conidia in liquid cultures was progressively inhibited at inoculum loads above 1×10(5)conidiamL(-1). High conidial densities also inhibited growth of neighbouring mycelia. The eight-carbon oxylipin 1-octen-3-ol was identified as the main inhibitor in a fraction also containing 3-octanone and 3-octanol. These three(More)
Conidiophore formation in Aspergillus nidulans involves a developmental programme in which vegetative hyphae give rise to an ordered succession of differentiated cells: foot cell, stalk, vesicle, metulae, phialides and conidia. The developmental transition requires factors that are expressed in vegetative hyphae that activate the expression of the main(More)
Nuclear transporters mediate bidirectional macromolecule traffic through the nuclear pore complex (NPC), thus participating in vital processes of eukaryotic cells. A systematic functional analysis in Aspergillus nidulans permitted the identification of 4 essential nuclear transport pathways of a hypothetical number of 14. The absence of phenotypes for most(More)
Asexual development in the filamentous fungus Aspergillus nidulans is governed by the timely expression and cellular localization of multiple transcription factors. Hence, factors mediating import and export across the nuclear pore complexes (karyopherins) are expected to play a key role in coordinating the developmental programme. Here we characterize(More)
Aspergillus nidulans asexual differentiation is induced by Upstream Developmental Activators (UDAs) that include the bZIP-type Transcription Factor (TF) FlbB. A 2D-PAGE/MS-MS-coupled screen for proteins differentially expressed in the presence and absence of FlbB identified 18 candidates. Most candidates belong to GO term classes involved in osmotic and/or(More)
In Aspergillus nidulans, asexual differentiation requires the presence of the transcription factor FlbB at the cell tip and apical nuclei. Understanding the relationship between these two pools is crucial for elucidating the biochemical processes mediating conidia production. Tip-to-nucleus communication was demonstrated by photo-convertible FlbB::Dendra2(More)
  • 1