Erika C Cosset

Learn More
Glioblastoma is a deadly malignant brain tumor and one of the most incurable forms of cancer in need of new therapeutic targets. As some cancers are known to be caused by a virus, the discovery of viruses could open the possibility to treat, and perhaps prevent, such a disease. Although an association with viruses such as cytomegalovirus or Simian virus 40(More)
The mechanisms of resistance to tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) often remain obscure. Analysis of patient samples during disease progression revealed the up-regulation of the oncogene TWIST-1, also measured in primary samples from TKI-resistant patients. Moreover, we found that TWIST-1 was overexpressed in CML diagnostic(More)
Glioblastoma is an aggressive brain tumor characterized by its high propensity for local invasion, formation of secondary foci within the brain, as well as areas of necrosis. This study aims to (i) provide a technical approach to reproduce features of the disease in vitro and (ii) characterize the tumor/host brain tissue interaction at the molecular level.(More)
Caveolin-1 plays a checkpoint function in the regulation of processes often altered in cancer. Although increased expression of caveolin-1 seems to be the norm in the glioma family of malignancies, populations of caveolin-1 positive and negative cells coexist among glioblastoma specimens. As no data are available to date on the contribution of such cells to(More)
Caveolin-1 plays a crucial role in the development of cancer and its progression. We previously reported that glioblastoma cells expressing low levels of caveolin-1 exerted a more aggressive phenotype than cells expressing high levels. Such phenotype was due to the induction of α(5) β(1) integrin subsequent to the depletion of caveolin-1. Caveolin-1 was(More)
Human cytomegalovirus (HCMV) is the most common cause of congenital infection of the central nervous system (CNS). To overcome the limited access to human neural tissue and stringent species specificity of HCMV, we used engineered neural tissues to: (i) provide a technical advance to mimick features of HCMV infection in a human neural fetal tissue in vitro(More)
Identifying the molecular basis for cancer cell dependence on oncogenes such as KRAS can provide new opportunities to target these addictions. Here, we identify a novel role for the carbohydrate-binding protein galectin-3 as a lynchpin for KRAS dependence. By directly binding to the cell surface receptor integrin αvβ3, galectin-3 gives rise to KRAS(More)
Glioblastoma multiforme (GBM) is among the most aggressive cancers associated with massive infiltration of peritumoral parenchyma by migrating tumor cells. The infiltrative nature of GBM cells, the intratumoral heterogeneity concomitant with redundant signaling pathways likely underlie the inability of conventional and targeted therapies to achieve(More)
  • 1