Erika Brattich

  • Citations Per Year
Learn More
This study reports the results of an experimental research project carried out in Bologna, a midsize town in central Po valley, with the aim at characterizing local aerosol chemistry and tracking the main source emissions of airborne particulate matter. Chemical speciation based upon ions, trace elements, and carbonaceous matter is discussed on the basis of(More)
The follow-up of Fukushima radioactive plume resulting from the 11th March 2011 devastating tsunami is discussed for two Italian stations in the northern Apennines: Mt. Cimone (Modena) and Montecuccolino (Bologna). Radioactivity data collected at both stations are described, including comparison between local natural background of airborne particulate and(More)
Vulsini Volcanic district in Northern Latium (Central Italy) is characterized by high natural radiation background resulting from the high concentrations of uranium, thorium and potassium in the volcanic products. In order to estimate the radon radiation risk, a series of soil gas radon measurements were carried out in Bolsena, the principal urban(More)
This work regards a comprehensive analysis of the overall distribution of 7Be activity concentrations in Spain and the synoptic meteorological conditions associated with the highest 7Be peaks (>8 mBq/m3). The use of four sampling stations (Barcelona, Bilbao, Madrid, and Sevilla) included in REMdb, with different latitudinal location, as well as the(More)
The Fukushima-labeled air mass arrival, and later the cesium-134 (134Cs), cesium-137 (137Cs) and particulate iodine-131 (hereafter noted 131Ip) maximum levels were registered in Europe at different dates depending on the location. Most of those data were obtained at low-altitude sampling areas. Here, we compare the airborne levels registered at different(More)
The Euganean Hills of North East Italy have long been recognised as an area characterized by a higher than average natural radiation background. This is due to two main reasons: a) primary lithogenic radiation due to rhyolitic and trachytic outcrops, which are "acidic alkaline" magmatic rocks potentially enriched in uranium and thorium; b) secondary sources(More)
  • 1