Erika Baldoli

Learn More
Evidence has accumulated to suggest that magnesium might play a role in controlling angiogenesis. Since microvascular endothelial cells are protagonists in this process, we investigated the behavior of these cells cultured in low extracellular magnesium or silenced for its transporter Transient Receptor Potential Melastatin (TRPM)7, essential for cellular(More)
Cancer cells within a tumor are functionally heterogeneous and specific subpopulations, defined as cancer initiating cells (CICs), are endowed with higher tumor forming potential. The CIC state, however, is not hierarchically stable and conversion of non-CICs to CICs under microenvironment signals might represent a determinant of tumor aggressiveness. How(More)
TRPM7, a cation channel of the transient receptor potential channel family, has been identified as a ubiquitous magnesium transporter. We here show that TRPM7 is expressed in endothelial cells isolated from the umbilical vein (HUVEC), widely used as a model of macrovascular endothelium. Quiescence and senescence do not modulate TRPM7 amounts, whereas(More)
Phenotypic modulation of endothelium to a dysfunctional state contributes to the pathogenesis of atherosclerosis, partly through the activation of the transcription factor NFkB. Several data indicate that magnesium deficiency caused by prolonged insufficient intake and/or defects in its homeostasis may be a missing link between diverse cardiovascular risk(More)
We examined the effects of some cytokinins and cytokinin ribosides including a series of adenosine analogs differently substituted in the N(6) position, along with some hypoxanthine derivatives on the viability of normal and neoplastic human cells. Cytokinins such as trans-zeatin, isopentenyladenine and benzyladenine do not show any effect, while cytokinin(More)
A series of adenosine analogues differently substituted in N⁶-position were synthesized to continue our studies on the relationships between structure and biological activity of iPA. The structures of the compounds were confirmed by standard studies of ¹H NMR, MS and elemental analysis. These molecules were then evaluated for their anti-proliferative(More)
The present study describes the synthesis, the characterization and the evaluation of some derivatives of N(6)-isopentenyladenosine on T24 human bladder carcinoma cells. In particular we have modified the hydroxyl groups in the ribose moiety, the position of the isopentenyl chain in the purine ring and the base moiety. The structures of the compounds were(More)
Divalent cations, especially calcium and magnesium, have been shown to play an important regulatory role in endothelial and immune cells. To learn more about the interaction of these two metals in the regulation of cell growth, we altered the calcium/magnesium ratio by culturing human endothelial cells, macrophages, and T lymphocytes in media containing(More)
Magnesium promotes endothelial migration, an event which is orchestrated by a complex interplay between protein tyrosine kinases and phosphatases. We found that high extracellular concentrations of magnesium do not modulate the levels and the activation of FAK and Src, two tyrosine kinases involved in driving cell migration. Interestingly, we show that(More)