Erik van Dijk

Learn More
The C-type lectin dendritic cell (DC)-specific intercellular adhesion molecule grabbing non-integrin (DC-SIGN; CD209) facilitates binding and internalization of several viruses, including HIV-1, on DCs, but the underlying mechanism for being such an efficient phagocytic pathogen-recognition receptor is poorly understood. By high resolution electron(More)
BACKGROUND The development of immunological donor-specific hyporeactivity may account for the low incidence of chronic rejection after clinical liver transplantation. We investigated whether hyporeactivity commonly develops after liver transplantation by analyzing precursor frequencies of donor-reactive cytotoxic (CTLp) and helper (HTLp) T lymphocytes and(More)
DC-SIGN, a C-type lectin exclusively expressed on dendritic cells (DCs), plays an important role in pathogen recognition by binding with high affinity to a large variety of microorganisms. Recent experimental evidence points to a direct relation between the function of DC-SIGN as a viral receptor and its spatial arrangement on the plasma membrane. We have(More)
Interleukin 2 and interleukin 15 (IL2 and IL15, respectively) provide quite distinct contributions to T-cell-mediated immunity, despite having similar receptor composition and signaling machinery. As most of the proposed mechanisms underlying this apparent paradox attribute key significance to the individual alpha-chains of IL2 and IL15 receptors, we(More)
We exploit the strong excitonic coupling in a superradiant trimer molecule to distinguish between long-lived collective dark states and photobleaching events. The population and depopulation kinetics of the dark states in a single molecule follow power-law statistics over 5 orders of magnitude in time. This result is consistent with the formation of a(More)
Molecular photonics is a new emerging field of research around the premise that it is possible to develop optical devices using single molecules as building blocks. Truly technological impact in the field requires focussed efforts on designing functional molecular devices as well as having access to their photonic properties on an individual basis. In this(More)
The detection of individual molecules has found widespread application in molecular biology, photochemistry, polymer chemistry, quantum optics and super-resolution microscopy. Tracking of an individual molecule in time has allowed identifying discrete molecular photodynamic steps, action of molecular motors, protein folding, diffusion, etc. down to the(More)
The extent of photon energy transfer through individual DNA-based molecular wires composed of five dyes is investigated at the single molecular level. Combining single-molecule spectroscopy and pulse interleaved excitation imaging, we have directly resolved the time evolution spectral response of individual constructs, while simultaneously probing DNA(More)
BACKGROUND After solid organ transplantation most alloantigens are presented to the recipient's immune system by normal tissue cells, which can be considered to act as nonprofessional antigen-presenting cells (APC). It is well accepted that such nonprofessional APC fail to activate recipient resting T cells due to their inability to deliver costimulatory(More)