Erik T. J. Nibbering

Learn More
The proton transfer mechanism between aqueous Brønsted acids and bases, forming an encounter pair, has been studied in real time with ultrafast infrared spectroscopy. The transient intermediacy of a hydrated proton, formed by ultrafast dissociation from an optically triggered photoacid proton donor ROH, is implicated by the appearance of an infrared(More)
The neutralization reaction between an acid and a base in water, triggered after optical excitation, was studied by femtosecond vibrational spectroscopy. Bimodal dynamics were observed. In hydrogen-bonded acid-base complexes, the proton transfer proceeds extremely fast (within 150 femtoseconds). In encounter pairs formed by diffusion of uncomplexed(More)
Many of the unusual properties of liquid water are attributed to its unique structure, comprised of a random and fluctuating three-dimensional network of hydrogen bonds that link the highly polar water molecules. One of the most direct probes of the dynamics of this network is the infrared spectrum of the OH stretching vibration, which reflects the(More)
Despite the widespread importance of aqueous bicarbonate chemistry, its conjugate acid, carbonic acid, has remained uncharacterized in solution. Here we report the generation of deuterated carbonic acid in deuterium oxide solution by ultrafast protonation of bicarbonate and its persistence for nanoseconds. We follow the reaction dynamics upon(More)
We characterize the structural and electronic changes during the photoinduced enol-keto tautomerization of 2-(2'-hydroxyphenyl)-benzothiazole (HBT) in a nonpolar solvent (tetrachloroethene). We quantify the redistribution of electronic charge and intramolecular proton translocation in real time by combining UV-pump/IR-probe spectroscopy and quantum chemical(More)
We present a liquid flatjet system for solution phase soft-x-ray spectroscopy. The flatjet set-up utilises the phenomenon of formation of stable liquid sheets upon collision of two identical laminar jets. Colliding the two single water jets, coming out of the nozzles with 50 μm orifices, under an impact angle of 48° leads to double sheet formation, of which(More)
  • 1