Erik Schéle

Learn More
CONTEXT Cell death-inducing DNA fragmentation factor-alpha-like effector A (CIDEA) could be a potential target for the treatment of obesity via the modulation of metabolic rate, based on the findings that CIDEA inhibits the brown adipose tissue uncoupling process in rodents. OBJECTIVES Our objects were to investigate the putative link between CIDEA and(More)
Interleukin (IL)-6 deficient mice develop mature-onset obesity. Furthermore, i.c.v. administration of IL-6 increases energy expenditure, suggesting that IL-6 centrally regulates energy homeostasis. To investigate whether it would be possible for IL-6 to directly influence the energy homeostasis via hypothalamic regulation in humans and rodents, we mapped(More)
Interleukin (IL)-6 is a pro-inflammatory cytokine that also affects metabolic function because IL-6 depleted (IL-6(-/-)) mice develop late-onset obesity. IL-6 appears to act in the central nervous system, presumably in the hypothalamus, to increase energy expenditure that appears to involve stimulation of the sympathetic nervous system. In the present(More)
The gut microbiota contributes to fat mass and the susceptibility to obesity. However, the underlying mechanisms are not completely understood. To investigate whether the gut microbiota affects hypothalamic and brainstem body fat-regulating circuits, we compared gene expression of food intake-regulating neuropeptides between germ-free and conventionally(More)
Interleukin (IL)-1 and IL-6 are immune modulating cytokines that also affect metabolic function because both IL-1 receptor I deficient (IL-1RI⁻/⁻) and IL-6 deficient (IL-6⁻/⁻) mice develop late-onset obesity and leptin resistance. Both IL-1 and IL-6 appear to target the central nervous system (CNS) to increase energy expenditure. The hypothalamic arcuate(More)
New insight suggests gut microbiota as a component in energy balance. However, the underlying mechanisms by which gut microbiota can impact metabolic regulation is unclear. A recent study from our lab shows, for the first time, a link between gut microbiota and energy balance circuitries in the hypothalamus and brainstem. In this article we will review this(More)
Severe infection, including sepsis, is an increasing clinical problem that causes prolonged morbidity and substantial mortality. At present, antibiotics are essentially the only pharmacological treatment for sepsis. The incidence of resistance to antibiotics is increasing; therefore, it is critical to find new therapies for sepsis. Staphylococcus aureus is(More)
The perinatal environment appears important in establishing metabolic phenotypes in adulthood. Mice deficient in IL-6 (IL-6(-/-)) tend to develop mature-onset obesity, but it is unknown whether perinatal exposure to IL-6 produced by the dam influences the metabolism of adult offspring. To address this issue, we monitored IL-6(-/-) offspring of IL-6(-/-) or(More)
Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor (ER)α. Central ERα exerts an inhibitory role on bone mass. ERα is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in(More)
Neuronal circuits in the hypothalamus and hindbrain are of importance for control of food intake, energy expenditure, and fat mass. We have recently shown that treatment with exendin-4 (Ex-4), an analog of the proglucagon-derived molecule glucagon-like peptide 1 (GLP-1), markedly increases mRNA expression of the cytokine interleukin-6 (IL-6) in the(More)