Learn More
Measurements of aerobic scope [the difference between minimum and maximum oxygen consumption rate ( and , respectively)] are increasing in prevalence as a tool to address questions relating to fish ecology and the effects of climate change. However, there are underlying issues regarding the array of methods used to measure aerobic scope across studies and(More)
This study was undertaken to provide a comprehensive set of data relevant to disclosing the physiological effects and possible oxygen transport limitations in the Chinook salmon (Oncorhynchus tshawytscha) during an acute temperature change. Fish were instrumented with a blood flow probe around the ventral aorta and catheters in the dorsal aorta and sinus(More)
The mechanism underlying the decrease in aerobic scope in fish at warm temperatures is not fully understood and is the focus of this research. Our study examined oxygen uptake and delivery in resting, swimming and recovering sockeye salmon while water temperature was acutely increased from 15 degrees C to 24 degrees C in 2 degrees C h(-1) increments. Fish(More)
Monitoring the physiological status and behaviour of free-swimming fishes remains a challenging task, although great promise stems from techniques such as biologging and biotelemetry. Here, implanted data loggers were used to simultaneously measure heart rate (f (H)), visceral temperature, and a derivation of acceleration in two groups of wild adult sockeye(More)
As a consequence of increasing atmospheric CO2, the world's oceans are becoming warmer and more acidic. Whilst the ecological effects of these changes are poorly understood, it has been suggested that fish performance including growth will be reduced mainly as a result of limitations in oxygen transport capacity. Contrary to the predictions given by the(More)
We have investigated if propranolol, a non-selective β-blocker present in sewage effluents, affects heart rate in rainbow trout. During a 48h exposure to a very high concentration of propranolol (70.9μg/L) no effects on heart rate were found. After a subsequent intravenous injection of propranolol, heart rate remained unaffected in pre-exposed fish but was(More)
In trout and salmon, the metabolic costs of exercise and feeding are additive, which would suggest that gastrointestinal blood flow during exercise is maintained to preserve digestive and absorptive processes related to the specific dynamic action (SDA) of food. However, in most published studies, gastrointestinal blood flow drops during swimming, hypoxia,(More)
Many ectotherms regularly experience considerable short-term variations in environmental temperature, which affects their body temperature. Here we investigate the cardiovascular responses to a stepwise acute temperature increase from 10 to 13 and 16 degrees C in rainbow trout (Oncorhynchus mykiss). Cardiac output increased by 20 and 31% at 13 and 16(More)
A progressive inability of the cardiorespiratory system to maintain systemic oxygen supply at elevated temperatures has been suggested to reduce aerobic scope and the upper thermal limit of aquatic ectotherms. However, few studies have directly investigated the dependence of thermal limits on oxygen transport capacity. By manipulating oxygen availability(More)
Ongoing climate change has led to an increase in sea surface temperatures of 2-4°C on the west coast of Greenland. Since fish are ectothermic, metabolic rate increases with ambient temperature. This makes these animals particularly sensitive to changes in temperature; subsequently any change may influence their metabolic scope, i.e. the physiological(More)