Learn More
Microglia, the resident inflammatory cells of the CNS, are the only CNS cells that express the fractalkine receptor (CX3CR1). Using three different in vivo models, we show that CX3CR1 deficiency dysregulates microglial responses, resulting in neurotoxicity. Following peripheral lipopolysaccharide injections, Cx3cr1-/- mice showed cell-autonomous microglial(More)
Multiple nuclei and fiber tracts in the adult rat brainstem and spinal cord were found to contain nerve growth factor receptor-related protein, as recognized by the monoclonal antibody 192-IgG. Both cholinergic and non-cholinergic sensory and motor regions demonstrated immunoreactive cell bodies and fibers. Nerve growth factor receptor-immunoreactive cells(More)
Mislocalization of the TAR-DNA binding protein (TDP-43) from the nucleus to the cytoplasm of diseased motor neurons and association with intraneuronal ubiquitinated inclusions has recently been reported in amyotrophic lateral sclerosis (ALS). Here, we have investigated TDP-43 immunoreactivity in three lines of mutant SOD1 transgenic mice, G93A, G37R and(More)
We performed magnetic resonance imaging and magnetic resonance spectroscopic imaging on 28 patients with multiple sclerosis stratified for disability and clinical course (relapsing with at least partial remissions or secondary progressive disease). Lesions were segmented on the conventional proton density and T2-weighted magnetic resonance images, and(More)
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a devastating, and currently incurable, neuromuscular disease in which oxidative stress and mitochondrial impairment are contributing to neuronal loss. Coenzyme Q10 (CoQ10), an antioxidant and mitochondrial cofactor, has shown promise in ALS transgenic mice, and in clinical trials for neurodegenerative(More)
MATR3 is an RNA- and DNA-binding protein that interacts with TDP-43, a disease protein linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Using exome sequencing, we identified mutations in MATR3 in ALS kindreds. We also observed MATR3 pathology in ALS-affected spinal cords with and without MATR3 mutations. Our data provide more(More)
OBJECTIVE In familial amyotrophic lateral sclerosis (fALS) harboring superoxide dismutase (SOD1) mutations (fALS1), SOD1 toxicity has been linked to its propensity to misfold and aggregate. It has recently been proposed that misfolded SOD1 may be causative of all types of ALS, including sporadic cases (sALS). In the present study, we have used a specific(More)
Axonal degeneration is the major cause of permanent neurological disability in individuals with inherited diseases of myelin. Axonal and neuronal changes that precede axonal degeneration, however, are not well characterized. We show here that dysmyelinated lower motor neurons retract and regenerate dysfunctional presynaptic terminals, leading to severe(More)
In the present study, coronal brain sections of cortically devascularized non-human primates (Cercopithecus aethiops) were used to assess the lesion-associated synaptic loss, and the effect of exogenous nerve growth factor (NGF) in preventing or reversing this neurodegeneration. The sections were immunolabeled with antibodies against the synaptic marker(More)
PURPOSE To study whether inconsistent findings in voxel-based morphometry (VBM) in amyotrophic lateral sclerosis (ALS) brain are due to use of different data preprocessing and statistical methods in two software packages. MATERIALS AND METHODS T1-weighted magnetic resonance imaging (MRI) was obtained during routine clinical imaging at 1.5T in ALS patients(More)