Learn More
The transglutaminase (Tgase) family consists of nine known members of whom at least three are expressed in the vascular system: type 1 Tgase, type 2 Tgase and factor XIII. The cross-linking of proteins is a characteristic feature of Tgases, of well-known importance for stabilizing the blood clot and providing mechanical strength to tissues. However, recent(More)
AIMS Altered blood flow affects vascular tone, attracts inflammatory cells, and leads to microvascular remodelling. We tested the hypothesis that inflammation facilitates the remodelling response, but that vascular tone determines its direction (inward or outward). METHODS AND RESULTS Mouse mesenteric resistance arteries were ligated to create either(More)
Measurements of the cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) provide useful information about cerebrovascular condition and regional metabolism. Pseudo-continuous arterial spin labeling (pCASL) is a promising non-invasive MRI technique to quantitatively measure the CBF, whereas additional hypercapnic pCASL measurements are currently(More)
The mechanisms of flow-induced vascular remodeling are poorly understood, especially in the coronary microcirculation. We hypothesized that application of flow in small coronary arteries in organoid culture would cause a nitric oxide (NO)-mediated dilation and inhibit inward remodeling. We developed an organoid culture setup to drive a flow through(More)
Remodeling of small arteries is essential in the long-term regulation of blood pressure and blood flow to specific organs or tissues. A large part of the change in vessel diameter may occur through non-growth-related reorganization of vessel wall components. The hypothesis was tested that tissue-type transglutaminase (tTG), a cross-linking enzyme,(More)
Chronic changes in blood flow induce an adaptation of vascular caliber. Thus, arteries show inward remodeling after a reduction in blood flow. We hypothesized that this remodeling depends on the crosslinking enzyme tissue-type transglutaminase (tTG). Flow-dependent remodeling was studied in wild-type (WT) and tTG-null mice using a surgically imposed change(More)
The hypothesis was tested that chronic vasoconstriction is followed by a structural reduction in lumen diameter, measured at full dilation. An in vitro model of pressurized rat skeletal muscle arterioles was used. During a 3-day experimental period, constriction of active vessels was achieved with fetal calf serum or endothelin-1 (ET-1). Maximal dilation(More)
Shear stress is well known to be a key factor in the regulation of small-artery tone and structure. Although nitric oxide is a major endothelium-derived factor involved in short- and long-term regulation of vascular caliber, it is clear that other mechanisms also can be involved. This review discusses the evidence for endothelium-derived reactive oxygen(More)
BACKGROUND Hypertension is associated with inward remodeling of small arteries and decreased erythrocyte deformability, both impairing proper tissue perfusion. We hypothesized that these alterations depend on transglutaminases, cross-linking enzymes present in the vascular wall, monocytes/macrophages and erythrocytes. METHODS AND RESULTS Wild-type (WT)(More)
Transglutaminase 2 (TG2) is a pleiotropic enzyme involved in both intra- and extracellular processes. In the extracellular matrix, TG2 stabilizes the matrix by both covalent cross-linking and disulfide isomerase activity. These functions become especially apparent during matrix remodeling as seen in wound healing, tumor development and vascular remodeling.(More)