Learn More
Measurements of the cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) provide useful information about cerebrovascular condition and regional metabolism. Pseudo-continuous arterial spin labeling (pCASL) is a promising non-invasive MRI technique to quantitatively measure the CBF, whereas additional hypercapnic pCASL measurements are currently(More)
AIMS Altered blood flow affects vascular tone, attracts inflammatory cells, and leads to microvascular remodelling. We tested the hypothesis that inflammation facilitates the remodelling response, but that vascular tone determines its direction (inward or outward). METHODS AND RESULTS Mouse mesenteric resistance arteries were ligated to create either(More)
Remodeling of small arteries is essential in the long-term regulation of blood pressure and blood flow to specific organs or tissues. A large part of the change in vessel diameter may occur through non-growth-related reorganization of vessel wall components. The hypothesis was tested that tissue-type transglutaminase (tTG), a cross-linking enzyme,(More)
Transglutaminase 2 (TG2) is a pleiotropic enzyme involved in both intra- and extracellular processes. In the extracellular matrix, TG2 stabilizes the matrix by both covalent cross-linking and disulfide isomerase activity. These functions become especially apparent during matrix remodeling as seen in wound healing, tumor development and vascular remodeling.(More)
The lymphatic clearance pathways of the brain are different compared to the other organs of the body and have been the subject of heated debates. Drainage of brain extracellular fluids, particularly interstitial fluid (ISF) and cerebrospinal fluid (CSF), is not only important for volume regulation, but also for removal of waste products such as amyloid beta(More)
Chronic changes in blood flow induce an adaptation of vascular caliber. Thus, arteries show inward remodeling after a reduction in blood flow. We hypothesized that this remodeling depends on the crosslinking enzyme tissue-type transglutaminase (tTG). Flow-dependent remodeling was studied in wild-type (WT) and tTG-null mice using a surgically imposed change(More)
In the absence of a true lymphatic system in the brain parenchyma, alternative clearance pathways for excess fluid and waste products have been proposed. Suggested mechanisms for clearance implicate a role for brain interstitial and cerebrospinal fluids. However, the proposed direction of flow, the anatomical structures involved, and the driving forces are(More)
During normal brain development, axons are myelinated by mature oligodendrocytes (OLGs). Under pathological, demyelinating conditions within the central nervous system (CNS), axonal remyelination is only partially successful because oligodendrocyte precursor cells (OPCs) largely remain in an undifferentiated state resulting in a failure to generate(More)
Remodeling of resistance arteries is a key feature in hypertension. We studied the transition of vasoconstriction to remodeling in isolated rat skeletal muscle arterioles. Arterioles activated with 10 nM endothelin-1 showed functional adaptation when kept at low distension in a wire myograph setup, where contractile properties shifted towards a smaller(More)