Erik Næsset

Learn More
Background: There is a need for new satellite remote sensing methods for monitoring tropical forest carbon stocks. Advanced RADAR instruments on board satellites can contribute with novel methods. RADARs can see through clouds, and furthermore, by applying stereo RADAR imaging we can measure forest height and its changes. Such height changes are related to(More)
—Active learning typically aims at minimizing the number of labeled samples to be included in the training set to reach a certain level of classification accuracy. Standard methods do not usually take into account the real annotation procedures and implicitly assume that all samples require the same effort to be labeled. Here, we consider the case where the(More)
A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the(More)
Evaluations of forest inventories usually end when accuracy and precision have been quantified. We aim to value the accuracy of information derived from different remote sensing sensors (airborne laser scanning, aerial multispectral and hyperspectral imagery) and four alternative forest inventory approaches. The approaches were (1) mean values or (2)(More)
This paper focuses on the use of models for increasing the precision of estimators in large-area forest surveys. It is motivated by the increasing availability of remotely sensed data, which facilitates the development of models predicting the variables of interest in forest surveys. We present, review and compare three different estimation frameworks where(More)