12Kim Schuske
12M Wayne Davis
12Marc Hammarlund
Learn More
The C. elegans defecation cycle is characterized by the contraction of three distinct sets of muscles every 50 s. Our data indicate that this cycle is regulated by periodic calcium release mediated by the inositol trisphosphate receptor (IP3 receptor). Mutations in the IP3 receptor slow down or eliminate the cycle, while overexpression speeds up the cycle.(More)
Synaptic vesicles dock to the plasma membrane at synapses to facilitate rapid exocytosis. Docking was originally proposed to require the soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) proteins; however, perturbation studies suggested that docking was independent of the SNARE proteins. We now find that the SNARE protein(More)
BACKGROUND In C. elegans, single nucleotide polymorphisms (SNPs) can function as silent genetic markers, with applications ranging from classical two- and three-factor mapping to measuring recombination across whole chromosomes. RESULTS Here, we describe a set of 48 primer pairs that flank SNPs evenly spaced across the C. elegans genome and that work(More)
Sec1-related proteins function in most, if not all, membrane trafficking pathways in eukaryotic cells. The Sec1-related protein required in neurons for synaptic vesicle exocytosis is UNC-18. Several models for UNC-18 function during vesicle exocytosis are under consideration. We have tested these models by characterizing unc-18 mutants of the nematode(More)
Intracellular membrane fusion is mediated by the concerted action of N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and Sec1/Munc18 (SM) proteins. During fusion, SM proteins bind the N-terminal peptide (N-peptide) motif of the SNARE subunit syntaxin, but the function of this interaction is unknown. Here, using FRET-based biochemical(More)
Intercellular calcium waves can be observed in adult tissues, but whether they are instructive, permissive, or even required for behavior is predominantly unknown. In the nematode Caenorhabditis elegans, a periodic calcium spike in a pacemaker cell initiates a calcium wave in the intestine. The calcium wave is followed by three muscle contractions that(More)
Regeneration of injured neurons can restore function, but most neurons regenerate poorly or not at all. The failure to regenerate in some cases is due to a lack of activation of cell-intrinsic regeneration pathways. These pathways might be targeted for the development of therapies that can restore neuron function after injury or disease. Here, we show that(More)
BACKGROUND Why do males and females behave differently? Sexually dimorphic behaviors could arise from sex-specific neurons or by the modification of circuits present in both sexes. C. elegans males exhibit different behaviors than hermaphrodites. Although there is a single class of sex-specific sensory neurons in the head of males, most of their neurons are(More)
Most neurotransmission is mediated by action potentials, whereas sensory neurons propagate electrical signals passively and release neurotransmitter in a graded manner. Here, we demonstrate that Caenorhabditis elegans neuromuscular junctions release neurotransmitter in a graded fashion. When motor neurons were depolarized by light-activation of(More)
␤-Spectrin is a major component of the membrane skeleton, a structure found at the plasma membrane of most animal cells. ␤-Spectrin and the membrane skeleton have been proposed to stabilize cell membranes, generate cell polarity, or localize specific membrane proteins. We demonstrate that the Cae-norhabditis elegans homologue of ␤-spectrin is encoded by the(More)