Erik Lefebvre

Learn More
Particle accelerators are used in a wide variety of fields, ranging from medicine and biology to high-energy physics. The accelerating fields in conventional accelerators are limited to a few tens of MeV m(-1), owing to material breakdown at the walls of the structure. Thus, the production of energetic particle beams currently requires large-scale(More)
Protontherapy is a well-established approach to treat cancer due to the favorable ballistic properties of proton beams. Nevertheless, this treatment is today only possible with large scale accelerator facilities which are very difficult to install at existing hospitals. In this article we report on a new approach for proton acceleration up to energies(More)
Rapid progress in the development of high-intensity laser systems has extended our ability to study light–matter interactions far into the relativistic domain, in which electrons are driven to velocities close to the speed of light. As well as being of fundamental interest in their own right, these interactions enable the generation of high-energy particle(More)
Plasmas are an attractive medium for the next generation of particle accelerators because they can support electric fields greater than several hundred gigavolts per meter. These accelerating fields are generated by relativistic plasma waves-space-charge oscillations-that can be excited when a high-intensity laser propagates through a plasma. Large currents(More)
The transverse emittance of a relativistic electron beam generated by the interaction of a high-intensity laser with an underdense plasma has been measured with the "pepper-pot" method. For parameters pertaining to the forced laser wakefield regime, we have measured an emittance as low as (2.7+/-0.9) pi mm mrad for (55+/-2) MeV electrons. These measurements(More)
We report on simultaneous measurements of backward- and forward-accelerated protons spectra when an ultrahigh intensity (approximately 5 x 10(18) W/cm(20), ultrahigh contrast (>10(10)) laser pulse interacts with foils of thickness ranging from 0.08 to 105 microm. Under such conditions, free of preplasma originating from ionization of the laser-irradiated(More)
The stability analysis of an electron-beam-plasma system is of critical relevance in many areas of physics. Surprisingly, decades of extensive investigation have not yet resulted in a realistic unified picture of the multidimensional unstable spectrum within a fully relativistic and kinetic framework. All attempts made so far in this direction were indeed(More)
In laser-plasma experiments, we observed that ion acceleration from the Coulomb explosion of the plasma channel bored by the laser is prevented when multiple plasma instabilities, such as filamentation and hosing, and nonlinear coherent structures (vortices or postsolitons) appear in the wake of an ultrashort laser pulse. The tailoring of the longitudinal(More)
Experimental measurements of proton acceleration with high intensity and high-contrast short laser pulses have been carried out over an order of magnitude range in target thickness and laser pulse duration. The dependence of the maximum proton energy with these parameters is qualitatively supported by two-dimensional particle-in-cell simulations. They(More)
Electrical characterization and modeling of 2 times 50 mum gatewidth InAs/AlSb HEMTs with 225 nm gate-length have been performed. The fabricated devices exhibited a transconductance g<sub>m</sub> of 650 mS/mm, an extrinsic cutoff frequency f<sub>T</sub> and an extrinsic maximum frequency of oscillation f<sub>max</sub> of 120 and 90 GHz, respectively,(More)