Erik Lefebvre

Learn More
Particle accelerators are used in a wide variety of fields, ranging from medicine and biology to high-energy physics. The accelerating fields in conventional accelerators are limited to a few tens of MeV m(-1), owing to material breakdown at the walls of the structure. Thus, the production of energetic particle beams currently requires large-scale(More)
Plasmas are an attractive medium for the next generation of particle accelerators because they can support electric fields greater than several hundred gigavolts per meter. These accelerating fields are generated by relativistic plasma waves-space-charge oscillations-that can be excited when a high-intensity laser propagates through a plasma. Large currents(More)
Protontherapy is a well-established approach to treat cancer due to the favorable ballistic properties of proton beams. Nevertheless, this treatment is today only possible with large scale accelerator facilities which are very difficult to install at existing hospitals. In this article we report on a new approach for proton acceleration up to energies(More)
The development of laser–plasma accelerators began in the early 1980s, inspired by the pioneering work of Tajima and Dawson. Key to their operation is the fact that unlike the superconducting radiofrequency cavities on which conventional accelerators are based, a plasma can support immense electric fields of 100GVm and greater, which can be generated by(More)
We report on simultaneous measurements of backward- and forward-accelerated protons spectra when an ultrahigh intensity (approximately 5 x 10(18) W/cm(20), ultrahigh contrast (>10(10)) laser pulse interacts with foils of thickness ranging from 0.08 to 105 microm. Under such conditions, free of preplasma originating from ionization of the laser-irradiated(More)
A gamma-ray source with an intense component around the giant dipole resonance for photonuclear absorption has been obtained via bremsstrahlung of electron bunches driven by a 10-TW tabletop laser. 3D particle-in-cell simulation proves the achievement of a nonlinear regime leading to efficient acceleration of several sequential electron bunches per each(More)
Beam loading is the phenomenon which limits the charge and the beam quality in plasma based accelerators. An experimental study conducted with a laser-plasma accelerator is presented. Beam loading manifests itself through the decrease of the beam energy, the reduction of dark current, and the increase of the energy spread for large beam charge. 3D PIC(More)
The stability analysis of an electron-beam-plasma system is of critical relevance in many areas of physics. Surprisingly, decades of extensive investigation have not yet resulted in a realistic unified picture of the multidimensional unstable spectrum within a fully relativistic and kinetic framework. All attempts made so far in this direction were indeed(More)
The transverse emittance of a relativistic electron beam generated by the interaction of a high-intensity laser with an underdense plasma has been measured with the "pepper-pot" method. For parameters pertaining to the forced laser wakefield regime, we have measured an emittance as low as (2.7+/-0.9) pi mm mrad for (55+/-2) MeV electrons. These measurements(More)