Learn More
Complex SOCs are increasingly tested in a modular fashion, which enables us to record the yield-per-module. In this paper, we consider the yield-per-module as the pass probability of the module's manufacturing test. We use it to exploit the abort-on-fail feature of ATEs, in order to reduce the expected test application time. We present a model for expected(More)
FUS, EWSR1 and TAF15, constituting the FET protein family, are abundant, highly conserved RNA-binding proteins with important roles in oncogenesis and neuronal disease, yet their RNA targets and recognition elements are unknown. Using PAR-CLIP, we defined global RNA targets for all human FET proteins and two ALS-causing human FUS mutants. FET members showed(More)
We propose an integrated framework for the design of SOC test solutions, which includes a set of algorithms for early design space exploration as well as extensive optimization for the final solution. The framework deals with test scheduling, test access mechanism design, test sets selection, and test resource placement. Our approach minimizes the test(More)
An integrated technique for test scheduling and scan-chain division under power constraints is proposed in this paper. We demonstrate that optimal test time can be achieved for systems tested by an arbitrary number of tests per core using scan-chain division and we define an algorithm for it. The design of wrappers to allow different lengths of scan-chains(More)
—A test solution for a complex system requires the design of a test access mechanism (TAM), which is used for the test data transportation, and a test schedule of the test data transportation on the designed TAM. An extensive TAM will lead to lower test-application time at the expense of higher routing costs, compared to a simple TAM with low routing cost(More)
The microRNA pathway participates in basic cellular processes and its discovery has enabled the development of si/shRNAs as powerful investigational tools and potential therapeutics. Based on a simple kinetic model of the mRNA life cycle, we hypothesized that mRNAs with high turnover rates may be more resistant to RNAi-mediated silencing. The results of a(More)