Learn More
PURPOSE Keyhole limpet hemocyanin (KLH) attracts biomedical interest because of its remarkable immunostimulatory properties. Currently, KLH is used as vaccine adjuvant, carrier protein for haptens and as local treatment for bladder cancer. Since a quantitative human anti-KLH assay is lacking, it has not been possible to monitor the dynamics of KLH-specific(More)
Vaccination against cancer by using dendritic cells has for more than a decade been based on dendritic cells generated ex vivo from monocytes or CD34(+) progenitors. Here, we report on the first clinical study of therapeutic vaccination against cancer using naturally occurring plasmacytoid dendritic cells (pDC). Fifteen patients with metastatic melanoma(More)
Dendritic cells (DC) are professional antigen-presenting cells of the immune system that play a key role in regulating T cell-based immunity. In vivo, the capacity of DC to activate T cells depends on their ability to migrate to the T cell areas of lymph nodes as well as on their maturation state. Depending on their cytokine-secreting profile, DC are able(More)
PURPOSE The success of immunotherapy with dendritic cells (DC) to treat cancer is dependent on effective migration to the lymph nodes and subsequent activation of antigen-specific T cells. In this study, we investigated the fate of DC after intradermal (i.d.) or intranodal (i.n.) administration and the consequences for the immune activating potential of DC(More)
PURPOSE Electroporation of dendritic cells (DC) with mRNA encoding tumor-associated antigens (TAA) has multiple advantages compared to peptide loading. We investigated the immunologic and clinical responses to vaccination with mRNA-electroporated DC in stage III and IV melanoma patients. EXPERIMENTAL DESIGN Twenty-six stage III HLA*02:01 melanoma patients(More)
Electroporation of dendritic cells (DC) with mRNA encoding tumor-associated antigens (TAA) for cancer immunotherapy has been proved efficient and clinically safe. It obviates prior knowledge of CTL and Th epitopes in the antigen and leads to the presentation of multiple epitopes for several HLA alleles. Here we studied the migration capacity and the antigen(More)
PURPOSE Thus far, dendritic cell (DC)-based immunotherapy of cancer was primarily based on in vitro-generated monocyte-derived DCs, which require extensive in vitro manipulation. Here, we report on a clinical study exploiting primary CD1c(+) myeloid DCs, naturally circulating in the blood. EXPERIMENTAL DESIGN Fourteen stage IV melanoma patients, without(More)
Autologous dendritic cell (DC) therapy is an experimental cellular immunotherapy that is safe and immunogenic in patients with advanced melanoma. In an attempt to further improve the therapeutic responses, we treated 15 patients with melanoma, with autologous monocyte-derived immature DC electroporated with mRNA encoding CD40 ligand (CD40L), CD70 and a(More)
Dendritic cell (DC)-based immunotherapy is explored worldwide in cancer patients, predominantly with DC matured with pro-inflammatory cytokines and prostaglandin E2. We studied the safety and efficacy of vaccination with monocyte-derived DC matured with a cocktail of prophylactic vaccines that contain clinical-grade Toll-like receptor ligands (BCG, Typhim,(More)
Dendritic cell (DC)-based vaccines require the cells to relocate to lymph nodes (LNs). Unfortunately, however, DC migration rates are typically very poor. We investigated strategies to increase the migration efficacy of DC-based vaccines. Surprisingly, a reduction in DC number, but not the conditioning of the injection site, improved LN targeting.