Learn More
To keep balance when standing or walking on a surface inclined in the roll plane, the cat modifies its body configuration so that the functional length of its right and left limbs becomes different. The aim of the present study was to assess the motor cortex participation in the generation of this left/right asymmetry. We recorded the activity of fore- and(More)
During locomotion, motor cortical neurons projecting to the pyramidal tract (PTNs) discharge in close relation to strides. How their discharges vary based on the part of the body they influence is not well understood. We addressed this question with regard to joints of the forelimb in the cat. During simple and ladder locomotion, we compared the activity of(More)
During navigation through complex natural environments, people and animals must adapt their movements when the environment changes. The neural mechanisms of such adaptations are poorly understood, especially with respect to constraints that are unexpected and must be adapted to quickly. In this study, we recorded forelimb-related kinematics, muscle(More)
Forward walking (FW) and backward walking (BW) are two important forms of locomotion in quadrupeds. Participation of the motor cortex in the control of FW has been intensively studied, whereas cortical activity during BW has never been investigated. The aim of this study was to analyze locomotion-related activity of the motor cortex during BW and compare it(More)
Recent data from this laboratory on differential controls for the shoulder, elbow, and wrist exerted by the thalamo-cortical network during locomotion is presented, based on experiments involving chronically instrumented cats walking on a flat surface and along a horizontal ladder. The activity of the following three groups of neurons is characterized: (1)(More)
UNLABELLED After traumatic brain injury (TBI), neurons surviving the initial insult can undergo chronic (secondary) degeneration via poorly understood mechanisms, resulting in long-term cognitive impairment. Although a neuroinflammatory response is promptly activated after TBI, it is unknown whether it has a significant role in chronic phases of TBI (>1(More)
Most movements need to be accurate. The neuronal mechanisms controlling accuracy during movements are poorly understood. In this study we compare the activity of fast- and slow-conducting pyramidal tract neurons (PTNs) of the motor cortex in cats as they walk over both a flat surface, a task that does not require accurate stepping and can be accomplished(More)
15 16 Forward walking (FW) and backward walking (BW) are two important forms of locomotion in 17 quadrupeds. Participation of the motor cortex in the control of FW has been intensively studied, 18 while cortical activity during BW has never been investigated. The aim of this study was to 19 analyze locomotion-related activity of the motor cortex during BW,(More)
  • 1