Learn More
Many potential treatments for Alzheimer's disease target amyloid-beta peptides (Abeta), which are widely presumed to cause the disease. The microtubule-associated protein tau is also involved in the disease, but it is unclear whether treatments aimed at tau could block Abeta-induced cognitive impairments. Here, we found that reducing endogenous tau levels(More)
Neural network dysfunction may play an important role in Alzheimer's disease (AD). Neuronal circuits vulnerable to AD are also affected in human amyloid precursor protein (hAPP) transgenic mice. hAPP mice with high levels of amyloid-beta peptides in the brain develop AD-like abnormalities, including cognitive deficits and depletions of calcium-related(More)
Autosomal dominant mutations of the RNA/DNA binding protein FUS are linked to familial amyotrophic lateral sclerosis (FALS); however, it is not clear how FUS mutations cause neurodegeneration. Using transgenic mice expressing a common FALS-associated FUS mutation (FUS-R521C mice), we found that mutant FUS proteins formed a stable complex with WT FUS(More)
The fibroblast growth factor family of secreted signaling molecules is essential for patterning in the central nervous system. Fibroblast growth factor 17 (Fgf17) has been shown to contribute to regionalization of the rodent frontal cortex. To determine how Fgf17 signaling modulates behavior, both during development and in adulthood, we studied mice lacking(More)
The enkephalin signaling pathway regulates various neural functions and can be altered by neurodegenerative disorders. In Alzheimer's disease (AD), elevated enkephalin levels may reflect compensatory processes or contribute to cognitive impairments. To differentiate between these possibilities, we studied transgenic mice that express human amyloid precursor(More)
BACKGROUND Frontotemporal lobar degeneration (FTLD) is a common cause of non-Alzheimer dementia, but its natural history and the factors related to mortality in affected patients are not well understood. METHODS This retrospective, longitudinal study compared survival in FTLD (n = 177) with Alzheimer disease (AD; n = 395). Hazards analysis investigated(More)
BACKGROUND Until recently, frontotemporal lobar degeneration (FTLD) was considered a rare neurodegenerative disorder that was difficult to diagnose. The publication of consensus criteria for FTLD, however, prompted systematic studies. The criteria categorize FTLD into 3 subgroups: frontotemporal dementia, semantic dementia, and progressive nonfluent(More)
Alzheimer's disease (AD) may result from the accumulation of amyloid-beta (Abeta) peptides in the brain. The cysteine protease cathepsin B (CatB) is associated with amyloid plaques in AD brains and has been suspected to increase Abeta production. Here, we demonstrate that CatB actually reduces levels of Abeta peptides, especially the aggregation-prone(More)
Tau is an emerging target for Alzheimer's disease (AD) and other conditions with epileptiform activity. Genetic tau reduction (in Tau(+/-) and Tau(-/-) mice) prevents deficits in AD models and has an excitoprotective effect, increasing resistance to seizures, without causing apparent neuronal dysfunction. However, most studies of tau reduction have been(More)
This week marks a century since the first description of Alzheimer's disease (AD). Despite approval of several drugs for AD, the disease continues to rob millions of their memories and their lives. Fortunately, many new therapies directly targeting the mechanisms underlying AD are now in the pipeline. Among the investigative AD therapies in clinical trials(More)