Erik B. Malarkey

Learn More
Astrocytes can release the excitatory transmitter glutamate which is capable of modulating activity in nearby neurons. This astrocytic glutamate release can occur through six known mechanisms: (i) reversal of uptake by glutamate transporters (ii) anion channel opening induced by cell swelling, (iii) Ca2+-dependent exocytosis, (iv) glutamate exchange via the(More)
Astrocytes can release a variety of transmitters, including glutamate and ATP, in response to stimuli that induce increases in intracellular Ca(2+) levels. This release occurs via a regulated, exocytotic pathway. As evidence of this, astrocytes express protein components of the vesicular secretory apparatus, including synaptobrevin 2, syntaxin, and SNAP-23.(More)
We used conductive nanotube films as substrates with which we could systematically vary the conductance to see how this property affects neuronal growth. Here we show that nanotube substrates in a narrow range of conductivity promote the outgrowth of neurites with a decrease in the number of growth cones as well as an increase in cell body area, while at(More)
Astrocytes can respond to a variety of stimuli by elevating their cytoplasmic Ca2+ concentration and can in turn release glutamate to signal adjacent neurons. The majority of this Ca2+ is derived from internal stores while a portion also comes from outside of the cell. Astrocytes use Ca2+ entry through store-operated Ca2+ channels to refill their internal(More)
Astrocytes can modulate synaptic transmission by releasing glutamate in a Ca(2+)-dependent manner. Although the internal Ca(2+) stores have been implicated as the predominant source of Ca(2+) necessary for this glutamate release, the contribution of different classes of these stores is still not well defined. To address this issue, we cultured purified(More)
We report the use of chemically-functionalized water soluble single-walled carbon nanotube (SWNT) graft copolymers for modulation of outgrowth of neuronal processes. The graft copolymers were prepared by the functionalization of SWNTs with poly-m-aminobenzene sulphonic acid and polyethylene glycol. When added to the culturing medium, these functionalized(More)
Astrocytes can release various gliotransmitters in response to stimuli that cause increases in intracellular Ca(2+) levels; this secretion occurs via a regulated exocytosis pathway. Indeed, astrocytes express protein components of the vesicular secretory apparatus. However, the detailed temporal characteristics of vesicular fusions in astrocytes are not(More)
Although primary cilia are well established as important sensory and signaling structures, their function in most tissues remains unknown. Obesity is a feature associated with some syndromes of cilia dysfunction, such as Bardet-Biedl syndrome (BBS) and Alström syndrome, as well as in several cilia mutant mouse models. Recent data indicate that obesity in(More)
Levetiracetam is an FDA-approved drug used to treat epilepsy and other disorders of the nervous system. Although it is known that levetiracetam binds the synaptic vesicle protein SV2A, how drug binding affects synaptic functioning remains unknown. Here we report that levetiracetam reverses the effects of excess SV2A in autaptic hippocampal neurons.(More)
The major excitatory neurotransmitter in the CNS, glutamate, can be released exocytotically by neurons and astrocytes. Glutamate released from neurons can affect adjacent astrocytes by changing their intracellular Ca(2+) dynamics and, vice versa, glutamate released from astrocytes can cause a variety of responses in neurons such as: an elevation of(More)