Erik A. Toso

Learn More
OBJECTIVE Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disease with an unclear genetic mechanism. Most patients have a contraction of the D4Z4 macrosatellite repeat array at 4qter, which is thought to cause partial demethylation (FSHD1) of the contracted allele. Demethylation has been surveyed at 3 restriction enzyme sites in the first(More)
Nucleophosmin (NPM), an oligomeric phosphoprotein and nucleolar target of the ARF tumor suppressor, contributes to several critical cellular processes. Previous studies have shown that the human NPM's phosphorylation by cyclin E–cyclin-dependent kinase 2 (cdk2) on threonine (Thr) 199 regulates its translocation from the centrosome during cell cycle(More)
Facioscapulohumeral muscular dystrophy (FSHD) is caused by epigenetic alterations at the D4Z4 macrosatellite repeat locus on chromosome 4, resulting in inappropriate expression of the DUX4 protein. The DUX4 protein is therefore the primary molecular target for therapeutic intervention. We have developed a high-throughput screen based on the toxicity of DUX4(More)
Misexpression of the double homeodomain transcription factor DUX4 results in facioscapulohumeral muscular dystrophy (FSHD). A DNA-binding consensus with two tandem TAAT motifs based on chromatin IP peaks has been discovered; however, the consensus has multiple variations (flavors) of unknown relative activity. In addition, not all peaks have this consensus,(More)
Facioscapulohumeral muscular dystrophy is a genetically dominant, currently untreatable muscular dystrophy. It is caused by mutations that enable expression of the normally silent DUX4 gene, which encodes a pathogenic transcription factor. A screen based on Tet-on DUX4-induced mouse myoblast death previously uncovered compounds from a 44,000-compound(More)
Facioscapulohumeral muscular dystrophy (FSHD) is a genetically dominant myopathy caused by mutations that disrupt repression of the normally silent DUX4 gene, which encodes a transcription factor that has been shown to interfere with myogenesis when misexpressed at very low levels in myoblasts and to cause cell death when overexpressed at high levels. A(More)
Satellite cells (SCs) are indispensable for muscle regeneration and repair; however, due to low frequency in primary muscle and loss of engraftment potential after ex vivo expansion, their use in cell therapy is currently unfeasible. To date, an alternative to this limitation has been the transplantation of SC-derived myogenic progenitor cells (MPCs),(More)
FSHD is a genetically dominant myopathy caused by mutations that disrupt repression of the normally silent DUX4 gene, which encodes a transcription factor that has been shown to interfere with myogenesis when misexpressed at very low levels in myoblasts, and to cause cell death when overexpressed at high levels. A previous report using adeno-associated(More)
Facioscapulohumeral muscular dystrophy (FSHD) is caused by inappropriate expression of the double homeodomain protein DUX4. DUX4 has bimodal effects, inhibiting myogenic differentiation and blocking MyoD at low levels of expression, and killing myoblasts at high levels. Pax3 and Pax7, which contain related homeodomains, antagonize the cell death phenotype(More)
  • 1