Learn More
The molecular mechanisms mediating degeneration of midbrain dopamine neurons in Parkinson's disease (PD) are poorly understood. Here, we provide evidence to support a role for the involvement of the calcium-dependent proteases, calpains, in the loss of dopamine neurons in a mouse model of PD. We show that administration of(More)
Parkinson's disease is characterized by a loss of dopaminergic nigrostriatal neurons. This neuronal loss is mimicked by the neurotoxin 1-methyl-4-phenylpyridinium (MPP+). MPP+ toxicity is mediated through inhibition of mitochondrial complex I, decreasing ATP production, and upregulation of oxygen radicals. There is evidence that the cell death induced by(More)
Caspase-3-deficient mice of the 129S1/SvImJ (129) strain show severe brain development defects resulting in brain overgrowth and perinatal lethality, whereas on the C57BL/6J (B6) background, these mice develop normally. We therefore sought to identify the strain-dependent ameliorating gene. We biochemically isolated caspase-7 from B6-caspase-3-null(More)
  • 1