Erica R. Staaterman

Learn More
Larval reef fish possess considerable swimming and sensory abilities, which could enable navigation towards settlement habitat from the open ocean. Due to their small size and relatively low survival, tagging individual larvae is not a viable option, but numerical modeling studies have proven useful for understanding the role of orientation throughout(More)
The acoustic ecology of marine fishes has traditionally focused on adults, while overlooking the early life-history stages. Here, we document the first acoustic recordings of pre-settlement stage grey snapper larvae (Lutjanus griseus). Through a combination of in situ and unprovoked laboratory recordings, we found that L. griseus larvae are acoustically(More)
Underwater soundscapes vary due to the abiotic and biological components of the habitat. We quantitatively characterized the acoustic environments of two coral reef habitats, one in the Tropical Eastern Pacific (Panama) and one in the Caribbean (Florida Keys), over 2-day recording durations in July 2011. We examined the frequency distribution, temporal(More)
Numerous animals produce sounds during interactions with potential predators, yet little is known about the acoustics of these sounds, especially in marine environments. California spiny lobsters (Panulirus interruptus) produce pulsatile rasps when interacting with potential predators. They generate sound using frictional structures located at the base of(More)
The response to capture is important in fisheries because it can reveal potential threats to species beyond fishing mortalities resulting from direct harvest. To date, the vast majority of studies assessing shark stress responses have used physiology or biotelemetry to look at sensitivity after capture, leaving a gap in our understanding of the behaviours(More)
  • 1