Erica M W Lauterwasser

  • Citations Per Year
Learn More
Artemisinin combination therapies (ACT) represent the current standard of care in the treatment of uncomplicated malaria. The widespread adoption of ACT has been motivated by a desire to minimize the emergence of drug resistance and to address the problem of recrudescence associated with artemisinin monotherapy. We set out to explore a single-molecule(More)
Antimalarial agents artemisinin and arterolane act via initial reduction of a peroxide bond in a process likely mediated by ferrous iron sources in the parasite. Here, we report the synthesis and antiplasmodial activity of arterolane-like 1,2,4-trioxolanes specifically designed to release a tethered drug species within the malaria parasite. Compared with(More)
The 1,2,4-trioxolanes are a new class of synthetic peroxidic antimalarials currently in human clinical trials. The well-known reactivity of the 1,2,4-trioxolane ring toward inorganic ferrous iron and ferrous iron heme is proposed to play a role in the antimalarial action of this class of compounds. We have designed structurally relevant fluorescent chemical(More)
A concise asymmetric approach to the indeno-tetrahydropyridine core of the unusual alkaloid haouamine B allowed for an investigation of a biomimetic oxidative phenol coupling as a proposed biosynthetic step, and ultimately provided access to the published structure of the natural product. As a consequence of our synthetic studies, the structure of haouamine(More)
Peroxidic antimalarial agents including the sequiterpene artemisinins and the synthetic 1,2,4-trioxolanes function via initial intraparasitic reduction of an endoperoxide bond. By chemically coupling this reduction to release of a tethered drug species it is possible to confer two distinct pharmacological effects in a parasite-selective fashion, both in(More)
The precise targeting of cytotoxic agents to specific cell types or cellular compartments is of significant interest in medicine, with particular relevance for infectious diseases and cancer. Here, we describe a method to exploit aberrant levels of mobile ferrous iron (Fe(II)) for selective drug delivery in vivo. This approach makes use of a(More)
  • 1