Erica Louise Scappini

Learn More
Receptor tyrosine kinases (RTKs) are critical for normal cell growth, differentiation, and development, but they contribute to various pathological conditions when disrupted. Activation of RTKs stimulates a plethora of pathways, including the ubiquitylation and endocytosis of the receptor itself. Although endocytosis terminates RTK signaling, it has emerged(More)
While endocytosis attenuates signals from plasma membrane receptors, recent studies suggest that endocytosis also serves as a platform for the compartmentalized activation of cellular signaling pathways. Intersectin (ITSN) is a multidomain scaffolding protein that regulates endocytosis and has the potential to regulate various biochemical pathways through(More)
Members of the intersectin (ITSN) family of scaffold proteins consist of multiple modular domains, each with distinct ligand preferences. Although ITSNs were initially implicated in the regulation of endocytosis, subsequent studies have revealed a more complex role for these scaffold proteins in regulation of additional biochemical pathways. In this study,(More)
The receptor for activated C-kinase 1 (RACK1) is a highly conserved WD40 repeat scaffold protein found in a wide range of eukaryotic species from Chlamydymonas to plants and humans. In tissues of higher mammals, RACK1 is ubiquitously expressed and has been implicated in diverse signaling pathways involving neuropathology, cellular stress, protein(More)
Single-nucleotide polymorphisms (SNPs) in the human ether-a-go-go-related gene 1, hERG1, are associated with cardiac arrhythmias. The Kv11.1 channels encoded by hERG1 are also essential for rhythmic excitability of the pituitary, where they are regulated by thyroid hormone through a signal transduction cascade involving the phosphatidylinositol 3-kinase(More)
Several rapid physiological effects of thyroid hormone on mammalian cells in vitro have been shown to be mediated by the phosphatidylinositol 3-kinase (PI3K), but the molecular mechanism of PI3K regulation by nuclear zinc finger receptor proteins for thyroid hormone and its relevance to brain development in vivo have not been elucidated. Here we show that,(More)
Huntingon's disease is a progressive neurodegenerative disease arising from expansion of a polyglutamine (polyQ) tract in the protein huntingtin (Htt) resulting in aggregation of mutant Htt into nuclear and/or cytosolic inclusions in neurons. Mutant Htt affects multiple processes including protein degradation, transcription, signal transduction, fast axonal(More)
Expansion of polyglutamine (polyQ) tracts within proteins underlies a number of neurodegenerative diseases, such as Huntington disease, Kennedy disease, and spinocerebellar ataxias. The resulting mutant proteins are unstable, forming insoluble aggregates that are associated with components of the ubiquitin system, including ubiquitin, ubiquitin-like(More)
Central noradrenergic neurons, collectively defined by synthesis of the neurotransmitter norepinephrine, are a diverse collection of cells in the hindbrain, differing in their anatomy, physiological and behavioral functions, and susceptibility to disease and environmental insult. To investigate the developmental basis of this heterogeneity, we have used an(More)
  • 1