Learn More
Mutations in the gene encoding TDP-43-the major protein component of neuronal aggregates characteristic of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitin-positive inclusion bodies-have been linked to familial forms of both disorders. Aggregates of TDP-43 in cortical and spinal motorneurons in ALS, or in(More)
The activity-regulated cytoskeletal (Arc) gene encodes a protein that is critical for memory consolidation. Arc is one of the most tightly regulated molecules known: neuronal activity controls Arc mRNA induction, trafficking and accumulation, and Arc protein production, localization and stability. Arc regulates synaptic strength through multiple mechanisms(More)
The activity-regulated cytoskeletal protein Arc (also known as Arg3.1) is required for long-term memory formation and synaptic plasticity. Arc expression is robustly induced by activity, and Arc protein localizes to both active synapses and the nucleus. Whereas its synaptic function has been examined, it is not clear why or how Arc is localized to the(More)
The identification and characterization of multipotent neural precursors open the possibility of transplant therapies, but this approach is complicated by the widespread pathology of many degenerative diseases. Activation of endogenous precursors that support regenerative mechanisms is a possible alternative. We have previously shown that Notch ligands(More)
A crucial step in directed cell migration is the recruitment of cytoskeletal regulatory and signaling proteins to the leading edge of the cell. One protein localized to the leading edge of a migrating astrocyte is beta-catenin. Using an in vitro wound-healing assay, we show that the localization of beta-catenin to the leading edge is dependent upon new(More)
Precise regulation of transcription is crucial for the cellular mechanisms underlying memory formation. However, the link between neuronal stimulation and the proteins that directly interact with histone modifications to activate transcription in neurons remains unclear. Brd4 is a member of the bromodomain and extra-terminal domain (BET) protein family,(More)
In this prospective controlled study, a 30-g protein-restricted diet supplemented by keto acids resulted in a delayed rate of progression of chronic renal failure. The effect of this treatment differed according to the underlying renal disease. The rate of progression of chronic renal failure was delayed by a factor of at least 2. A need for long-term(More)
In Parkinson's disease, multiple cell types in many brain regions are afflicted. As a consequence, a therapeutic strategy that activates a general neuroprotective response may be valuable. We have previously shown that Notch ligands support neural precursor cells in vitro and in vivo. Here we show that neural precursors express the angiopoietin receptor(More)
Improved treatment for major depressive disorder (MDD) remains elusive because of the limited understanding of its underlying biological mechanisms. It is likely that stress-induced maladaptive transcriptional regulation in limbic neural circuits contributes to the development of MDD, possibly through epigenetic factors that regulate chromatin structure. We(More)