Erica G. Schmitt

Learn More
Although both natural and induced regulatory T (nTreg and iTreg) cells can enforce tolerance, the mechanisms underlying their synergistic actions have not been established. We examined the functions of nTreg and iTreg cells by adoptive transfer immunotherapy of newborn Foxp3-deficient mice. As monotherapy, only nTreg cells prevented disease lethality, but(More)
CD4(+) CD25(+) Foxp3(+) regulatory T (Treg) cells are essential to the balance between pro- and anti-inflammatory responses. There are two major subsets of Treg cells, "natural" Treg (nTreg) cells that develop in the thymus, and "induced" Treg (iTreg) cells that arise in the periphery from CD4(+) Foxp3(-) conventional T cells and can be generated in vitro.(More)
"Natural" regulatory T cells (nTregs) that express the transcription factor Foxp3 and produce IL-10 are required for systemic immunological tolerance. "Induced" regulatory T cells (iTregs) are nonredundant and essential for tolerance at mucosal surfaces, yet their mechanisms of suppression and stability are unknown. We investigated the role of(More)
Induced regulatory T (iTreg) and Th17 cells promote mucosal homeostasis. We used a T cell transfer model of colitis to compare the capacity of iTreg and Th17 cells to develop in situ following the transfer of naive CD4(+)CD45RB(hi)T cells intoRag1(-/-)C57BL/6 or BALB/c mice, the prototypical Th1/M1- and Th2/M2-prone strains. We found that the frequency and(More)
To study regulatory T (Treg) cell control of chronic autoimmunity in a lymphoreplete host, we created and characterized a new model of autoimmune lung inflammation that targets the medium and small airways. We generated transgenic mice that express a chimeric membrane protein consisting of hen egg lysozyme and a hemoglobin epitope tag under the control of(More)
Purpose Regulatory T (Treg) cells are an essential subset of CD4+ T cells that induce and maintain immunological tolerance. Preclinical animal models have demonstrated that adop-tive transfer of Treg cells can prevent or cure diabetes, multiple sclerosis (EAE), inflammatory bowel disease, lupus, arthritis, and graft versus host disease. Defects in Treg cell(More)
  • 1