Erica Forzani

Learn More
Real-time detection of trace chemicals, such as explosives, in a complex environment containing various interferents has been a difficult challenge. We describe here a hybrid nanosensor based on the electrochemical reduction of TNT and the interaction of the reduction products with conducting polymer nanojunctions in an ionic liquid. The sensor(More)
To improve our understanding of indoor and outdoor personal exposures to common environmental toxicants released into the environment, new technologies that can monitor and quantify the toxicants anytime anywhere are needed. This paper presents a wearable sensor to provide such capabilities. The sensor can communicate with a common smart phone and provides(More)
We have built a high-resolution differential surface plasmon resonance (SPR) sensor for heavy metal ion detection. The sensor surface is divided into a reference and sensing areas, and the difference in the SPR angles from the two areas is detected with a quadrant cell photodetector as a differential signal. In the presence of metal ions, the differential(More)
A hybrid sensor for monitoring volatile organic compounds (VOCs) in air is developed. The device combines two orthogonal sensing principles, selective molecular binding with a microfabricated quartz tuning fork detector and separation of analytes with a column. The tuning fork detector is functionalized with molecular imprinted polymers for selective(More)
High-resolution differential surface plasmon resonance (SPR) with anodic stripping voltammetry (ASV) capability has been demonstrated for detecting heavy metal ions in water. Metal ions are electroplated onto the gold SPR sensing surface and are quantitatively detected by stripping voltammetry. Both the SPR angular shift and electrochemical current signal(More)
A wearable monitor that can reliably, accurately, and continuously measure personal exposure levels of various toxicants would not only accelerate the current environmental and occupational health and safety studies, but also enable new studies that are not possible with the current monitoring technology. Developing such a monitor has been a difficult(More)
We report on a hybrid chemical sensor that can perform either amperometric or conductometric detection alone or simultaneously. It consists of an array of electrode pairs in which the two electrodes in each pair are separated with micrometer to nanometer-scale gaps. The gaps are bridged with conducting polymer (polyaniline) so that one can measure the(More)
We report here a chemical sensor based on detecting the mechanical response of a thin (approximately 10-microm) polymer wire stretched across the two prongs of a wristwatch quartz tuning fork (QTF). When the fork is set to oscillate, the wire is stretched and compressed by the two prongs. The stretching/compression force changes upon adsorption of analyte(More)
We report here a novel bioelectrode based on self-assembled multilayers of polyphenol oxidase intercalated with cationic polyallylamine built up on a thiol-modified gold surface. We use an immobilization strategy previously described by Hodak J. et al. (Langmuir 1997, 13, 2708-2716) Quartz crystal microbalance with electroacustic impedance experiments were(More)