Erica A Baker

Learn More
Crimean-Congo hemorrhagic fever (CCHF) virus is a tick-borne, negative-sense, single-stranded RNA [ssRNA(-)] nairovirus that produces fever, prostration, and severe hemorrhages in humans. With fatality rates for CCHF ranging up to 70% based on several factors, CCHF is considered a dangerous emerging disease. Originally identified in the former Soviet Union(More)
Formation constants for the calcium(II), magnesium(II) and zinc(II) complexes of the orally effective iron chelator, pyridoxal isonicotinoyl hydrazone (PIH) and three analogues, pyridoxal benzoyl hydrazone (PBH), pyridoxalp-methoxybenzoyl hydrazone (PpMBH) and pyridoxalm-fluorobenzoyl hydrazone (PmFBH) have been determined by potentiometry at 25\dg C(More)
A range of new analogues of the promising iron chelator pyridoxal isonicotinoyl hydrazone was prepared and assessed for activity in reducing hepatocyte iron, mechanism of action and potential in iron-chelation therapy. A total of 45 compounds were synthesized by condensation of aromatic aldehydes (pyridoxal, salicylaldehyde and 2-hydroxy-1-naphthylaldehyde)(More)
Transferrin receptor 1 (TfR1) which mediates uptake of transferrin-bound iron, is essential for life in mammals. Recently, a close homologue of human transferrin receptor 1 was cloned and called transferrin receptor 2 (TfR2). A similar molecule has been identified in the mouse. Human transferrin receptor 2 is 45% identical with transferrin receptor 1 in the(More)
Nairoviruses are responsible for numerous diseases that affect both humans and animal. Recent work has implicated the viral ovarian tumor domain (vOTU) as a possible nairovirus virulence factor due to its ability to edit ubiquitin (Ub) bound to cellular proteins and, at least in the case of Crimean-Congo hemorrhagic fever virus (CCHFV), to cleave the(More)
The mechanisms of iron (Fe) and transferrin (Tf) uptake by the human melanoma cell line, SK-MEL-28, have been investigated using chelators and metabolic probes. These data provide evidence for two saturable processes of Fe uptake from Tf, namely, specific receptor-mediated endocytosis and a second nonspecific, non-receptor-mediated mechanisms which(More)
The role of the transferrin homologue, melanotransferrin (p97), in iron metabolism has been studied using the human melanoma cell line, SK-MEL-28, which expresses this antigen in high concentrations. The mechanisms of iron and transferrin uptake were investigated using human transferrin labelled with iodine-125 and iron-59. Internalised and membrane-bound(More)
Liposome-entrapped desferrioxamine was administered to iron-over-loaded 59Fe lavelled mice. When given orally or intraperitoneally entrapment did not enhance the effect of the chelator, but given intravenously liposomal desferrioxamine doubled the 59Fe excretion for a given dose of the drug, and excretion after a single dose continued for up to 3 d. In(More)
A model consisting of 59Fe-labelled macrophages was developed for screening potential iron-chelating drugs. Mouse peritoneal macrophages, induced by previous intraperitoneal injections of 3% thioglycollate, were labelled in vitro by their exposure to immune complexes of 59Fe-transferrin-antitransferrin antibody. Optimal conditions for macrophage labelling(More)
The mechanism of action of the clinically used iron(III) chelator, desferrioxamine (DFO), on preventing iron (Fe) uptake from transferrin (Tf) has been investigated using the human melanoma cell line SK-MEL-28. This investigation was initiated due to the paucity of information on the mechanisms of action of DFO in neoplastic cells and because recent studies(More)