Erica A Baker

Learn More
Crimean-Congo hemorrhagic fever (CCHF) virus is a tick-borne, negative-sense, single-stranded RNA [ssRNA(-)] nairovirus that produces fever, prostration, and severe hemorrhages in humans. With fatality rates for CCHF ranging up to 70% based on several factors, CCHF is considered a dangerous emerging disease. Originally identified in the former Soviet Union(More)
A range of new analogues of the promising iron chelator pyridoxal isonicotinoyl hydrazone was prepared and assessed for activity in reducing hepatocyte iron, mechanism of action and potential in iron-chelation therapy. A total of 45 compounds were synthesized by condensation of aromatic aldehydes (pyridoxal, salicylaldehyde and 2-hydroxy-1-naphthylaldehyde)(More)
Formation constants for the calcium(II), magnesium(II) and zinc(II) complexes of the orally effective iron chelator, pyridoxal isonicotinoyl hydrazone (PIH) and three analogues, pyridoxal benzoyl hydrazone (PBH), pyridoxalp-methoxybenzoyl hydrazone (PpMBH) and pyridoxalm-fluorobenzoyl hydrazone (PmFBH) have been determined by potentiometry at 25\dg C(More)
The effects of ferric ammonium citrate (FAC) and desferrioxamine (DFO) on iron (Fe), and transferrin (Tf) uptake have been investigated using SK-MEL-28 human melanoma cells, which express the Tf homologue, melanotransferrin, in high concentrations. Previously we demonstrated two separate Fe uptake mechanisms from Tf, viz. a specific process mediated by the(More)
The uptake of transferrin-bound iron by receptor-mediated endocytosis has been the subject of extensive experimental investigation. However, the path followed by iron (Fe) after release from transferrin (Tf) remains obscure. Once Fe is released from Tf within the endosome, it must be transported across the endosomal membrane into the cell. The present(More)
Transferrin receptor 1 (TfR1) which mediates uptake of transferrin-bound iron, is essential for life in mammals. Recently, a close homologue of human transferrin receptor 1 was cloned and called transferrin receptor 2 (TfR2). A similar molecule has been identified in the mouse. Human transferrin receptor 2 is 45% identical with transferrin receptor 1 in the(More)
The mechanism of action of the clinically used iron(III) chelator, desferrioxamine (DFO), on preventing iron (Fe) uptake from transferrin (Tf) has been investigated using the human melanoma cell line SK-MEL-28. This investigation was initiated due to the paucity of information on the mechanisms of action of DFO in neoplastic cells and because recent studies(More)
Nairoviruses are responsible for numerous diseases that affect both humans and animal. Recent work has implicated the viral ovarian tumor domain (vOTU) as a possible nairovirus virulence factor due to its ability to edit ubiquitin (Ub) bound to cellular proteins and, at least in the case of Crimean-Congo hemorrhagic fever virus (CCHFV), to cleave the(More)
The mechanisms of iron (Fe) and transferrin (Tf) uptake by the human melanoma cell line, SK-MEL-28, have been investigated using chelators and metabolic probes. These data provide evidence for two saturable processes of Fe uptake from Tf, namely, specific receptor-mediated endocytosis and a second nonspecific, non-receptor-mediated mechanisms which(More)
The role of the transferrin homologue, melanotransferrin (p97), in iron metabolism has been studied using the human melanoma cell line, SK-MEL-28, which expresses this antigen in high concentrations. The mechanisms of iron and transferrin uptake were investigated using human transferrin labelled with iodine-125 and iron-59. Internalised and membrane-bound(More)