Eric Y. Hu

Learn More
17-beta-Estradiol (E2) is a steroid hormone involved in numerous bodily functions, including several brain functions. In particular, E2 is neuroprotective against excitotoxicity and other forms of brain injuries, a property that requires the extracellular signal-regulated kinase (ERK) pathway and possibly that of other signaling molecules. The mechanism and(More)
One of the fundamental characteristics of the brain is its hierarchical organization. Scales in both space and time that must be considered when integrating across hierarchies of the nervous system are sufficiently great as to have impeded the development of routine multilevel modeling methodologies. Complex molecular interactions at the level of receptors(More)
Paired-pulse stimulation is a standard protocol that has been used for decades to characterize dynamic systems: the differences in responses to two sequential identical stimuli as a function of inter-stimulus interval provide quantitative information on the dynamics of the system. In neuroscience, the paired-pulse protocol is also widely used at multiple(More)
Glutamatergic synapses are the most prevalent functional elements of information processing in the brain. Changes in pre-synaptic activity and in the function of various post-synaptic elements contribute to generate a large variety of synaptic responses. Previous studies have explored postsynaptic factors responsible for regulating synaptic strength(More)
Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in(More)
Synaptic transmission is governed by a series of complex and highly nonlinear mechanisms and pathways in which the dynamics have a profound influence on the overall signal sent to the postsynaptic cell. In simulation, these mechanisms are often represented through kinetic models governed by state variables and rate law equations. Calculations of such(More)
Presynaptic vesicular release of neurotransmitters is a stochastic process involving complex mechanisms triggered by an elevation of calcium concentration. The mechanisms behind neurotransmitters release play a critical role in synaptic function and plasticity. Understanding its properties, both in term of its dynamics and its underlying mechanisms, may(More)
Paired-pulse protocol is a well-established stimulation pattern used to characterize short-term changes in synaptic potency. Due to the experimental difficulty in accessing and measuring responses and interactions between subsynaptic elements, understanding the mechanisms that shape synaptic response is extremely challenging. We already proposed to address(More)
Paired-pulse protocol is a stimulation pattern that is often used to characterize short-term changes in synaptic potency. Responses to such protocol often yield varying results, going from a depressing response to a facilitated one following the second pulse. Similarly, experimental results have shown that synaptic structures are dynamic and receptors move(More)