Eric Wei-Guang Diau

Learn More
The iodide/triiodide redox shuttle has limited the efficiencies accessible in dye-sensitized solar cells. Here, we report mesoscopic solar cells that incorporate a Co((II/III))tris(bipyridyl)-based redox electrolyte in conjunction with a custom synthesized donor-π-bridge-acceptor zinc porphyrin dye as sensitizer (designated YD2-o-C8). The specific molecular(More)
Measurements of anisotropy of femtosecond fluorescence after direct excitation of the S1(n,pi*) state of azobenzene in hexane and ethylene glycol solutions have been carried out to address the controversy about inversion and rotation in the mechanism of photoisomerization. The observed anisotropies in hexane decay to a nonzero asymptotic level with a(More)
Oxasmaragdyrin boron complexes were prepared and applied in DSSCs. The HOMO-LUMO energy gap analyses and theoretical calculations revealed that these expanded porphyrins are ideal sensitizers for DSSCs. A device containing oxasmaragdyrin-BF2 as the sensitizer achieves an energy conversion efficiency of 5.7%.
A series of porphyrin sensitizers that featured two electron-donating groups and dual anchoring groups that were connected through a porphine π-bridging unit have been synthesized and successfully applied in dye-sensitized solar cells (DSSCs). The presence of electron-donating groups had a significant influence on their spectroscopic, electrochemical, and(More)
We report characterizations and device performance for dye-sensitized solar cells using cis- and trans-isomers of 2D-π-2A zinc porphyrins with carboxyphenyl and thienyl groups in their meso-positions. Under identical experimental conditions with similar dye loadings, we observed overall power conversion efficiencies of 2.44% and 0.88% for devices made of(More)
[reaction: see text] Oxidosqualene-lanosterol cyclases convert oxidosqualene to lanosterol in yeast and mammals. Site-saturated mutants' construction of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase, at Trp232 exchanges against proteinogenic amino acids, and product profiles are shown. All mutants, except Lys and Arg, produced(More)
Nature has chosen chlorophylls in plants as antennae to harvest light for the conversion of solar energy in complicated photosynthetic processes. Inspired by natural photosynthesis, scientists utilized artificial chlorophylls - the porphyrins - as efficient centres to harvest light for solar cells sensitized with a porphyrin (PSSC). After the first example(More)
In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy(More)
Novel meso- or beta-derivatized porphyrins with a carboxyl group have been designed and synthesized for use as sensitizers in dye-sensitized solar cells (DSSCs). The position and nature of a bridge connecting the porphyrin ring and carboxylic acid group show significant influences on the spectral, electrochemical, and photovoltaic properties of these(More)