Eric W. Sellers

Learn More
This study assesses the relative performance characteristics of five established classification techniques on data collected using the P300 Speller paradigm, originally described by Farwell and Donchin (1988 Electroenceph. Clin. Neurophysiol. 70 510). Four linear methods: Pearson's correlation method (PCM), Fisher's linear discriminant (FLD), stepwise(More)
OBJECTIVE The current study evaluates the effectiveness of a brain-computer interface (BCI) system that operates by detecting a P300 elicited by one of four randomly presented stimuli (i.e. YES, NO, PASS, END). METHODS Two groups of participants were tested. The first group included three amyotrophic lateral sclerosis (ALS) patients that varied in degree(More)
This study examines the effects of expanding the classical P300 feature space on the classification performance of data collected from a P300 speller paradigm [Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroenceph Clin Neurophysiol 1988;70:510-23]. Using stepwise linear(More)
OBJECTIVE An electroencephalographic brain-computer interface (BCI) can provide a non-muscular means of communication for people with amyotrophic lateral sclerosis (ALS) or other neuromuscular disorders. We present a novel P300-based BCI stimulus presentation - the checkerboard paradigm (CBP). CBP performance is compared to that of the standard row/column(More)
We describe a study designed to assess properties of a P300 brain-computer interface (BCI). The BCI presents the user with a matrix containing letters and numbers. The user attends to a character to be communicated and the rows and columns of the matrix briefly intensify. Each time the attended character is intensified it serves as a rare event in an(More)
This study compared a conventional P300 speller brain-computer interface (BCI) to one used in conjunction with a predictive spelling program. Performance differences in accuracy, bit rate, selections per minute, and output characters per minute (OCM) were examined. An 8×9 matrix of letters, numbers, and other keyboard commands was used. Participants (n =(More)
OBJECTIVE The current study evaluates the efficacy of a P300-based brain-computer interface (BCI) communication device for individuals with advanced ALS. METHODS Participants attended to one cell of a N x N matrix while the N rows and N columns flashed randomly. Each cell of the matrix contained one character. Every flash of an attended character served(More)
Our objective was to develop and validate a new brain-computer interface (BCI) system suitable for long-term independent home use by people with severe motor disabilities. The BCI was used by a 51-year-old male with ALS who could no longer use conventional assistive devices. Caregivers learned to place the electrode cap, add electrode gel, and turn on the(More)
OBJECTIVE Brain-computer interface (BCI) technology can provide severely disabled people with non-muscular communication. For those most severely disabled, limitations in eye mobility or visual acuity may necessitate auditory BCI systems. The present study investigates the efficacy of the use of six environmental sounds to operate a 6x6 P300 Speller. (More)
An adaptive P300 brain-computer interface (BCI) using a 12 × 7 matrix explored new paradigms to improve bit rate and accuracy. During online use, the system adaptively selects the number of flashes to average. Five different flash patterns were tested. The 19-flash paradigm represents the typical row/column presentation (i.e. 12 columns and 7 rows). The 9-(More)