Learn More
Citation Wise, W. D. et al. " Imaging nanoscale Fermi-surface variations in an inhomogeneous superconductor. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access(More)
Citation Wise, W. D. et al. " Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share(More)
Scanning tunneling microscopy is used to image the additional quasi-particle states generated by quantized vortices in the high critical temperature superconductor Bi2Sr2CaCu2O8+delta. They exhibit a copper-oxygen bond-oriented "checkerboard" pattern, with four unit cell (4a0) periodicity and a approximately 30 angstrom decay length. These electronic(More)
The parent compounds of the copper oxide high-transition-temperature (high-Tc) superconductors are unusual insulators (so-called Mott insulators). Superconductivity arises when they are 'doped' away from stoichiometry. For the compound Bi2Sr2CaCu2O8+x, doping is achieved by adding extra oxygen atoms, which introduce positive charge carriers ('holes') into(More)
Granular superconductivity occurs when microscopic superconducting grains are separated by non-superconducting regions; Josephson tunnelling between the grains establishes the macroscopic superconducting state. Although crystals of the copper oxide high-transition-temperature (high-Tc) superconductors are not granular in a structural sense, theory suggests(More)
Magnetic interactions and magnetic impurities are destructive to superconductivity in conventional superconductors. By contrast, in some unconventional macroscopic quantum systems (such as superfluid 3He and superconducting UGe2), the superconductivity (or superfluidity) is actually mediated by magnetic interactions. A magnetic mechanism has also been(More)
The competition between proximate electronic phases produces a complex phenomenology in strongly correlated systems. In particular, fluctuations associated with periodic charge or spin modulations, known as density waves, may lead to exotic superconductivity in several correlated materials. However, density waves have been difficult to isolate in the(More)
Configuration transitions of individual molecules and atoms on surfaces are traditionally described using an Arrhenius equation with energy barrier and pre-exponential factor (attempt rate) parameters. Characteristic parameters can vary even for identical systems, and pre-exponential factors sometimes differ by orders of magnitude. Using low-temperature(More)
The unclear relationship between cuprate superconductivity and the pseudogap state remains an impediment to understanding the high transition temperature (T(c)) superconducting mechanism. Here, we used magnetic field-dependent scanning tunneling microscopy to provide phase-sensitive proof that d-wave superconductivity coexists with the pseudogap on the(More)