#### Filter Results:

- Full text PDF available (71)

#### Publication Year

1996

2017

- This year (1)
- Last five years (16)

#### Publication Type

#### Co-author

#### Publication Venue

#### Data Set Used

#### Key Phrases

#### Method

Learn More

- Mark Jerrum, Alistair Sinclair, Eric Vigoda
- J. ACM
- 2000

We present a fully-polynomial randomized approximation scheme for computing the permanent of an arbitrary matrix with non-negative entries.

- Michael Luby, Eric Vigoda
- Random Struct. Algorithms
- 1999

We consider the problem of sampling independent sets of a graph with maximum degree. The weight of each independent set is expressed in terms of a xed positive parameter 2 ?2 , where the weight of an independent set is jj. The Glauber dynamics is a simple Markov chain Monte Carlo method for sampling from this distribution. We show fast convergence of this… (More)

- Michael Luby, Eric Vigoda
- STOC
- 1997

We presenta fully-polynomial scheme to approximate the number of independentsets in graphs with maximum degree four. In general, for graphswith maximum degree A ~ 4, the scheme approximates a weighted sum of independent sets. The weight of each independent set is expressed in terms of a positive parameter A < ~, where the weight of independent set S is… (More)

- Eric Vigoda
- FOCS
- 1999

- Martin E. Dyer, Alistair Sinclair, Eric Vigoda, Dror Weitz
- RANDOM
- 2002

The paper considers spin systems on the d-dimensional integer lattice Z d with nearest-neighbor interactions. A sharp equivalence is proved between decay with distance of spin correlations (a spatial property of the equilibrium state) and rapid mixing of the Glauber dynamics (a temporal property of a Markov chain Monte Carlo algorithm). Specifically, we… (More)

- Eric Vigoda
- Electr. J. Comb.
- 2001

This note considers the problem of sampling from the set of weighted independent sets of a graph with maximum degree. For a positive fugacity , the weight of an independent set is jj. Luby and Vigoda proved that the Glauber dynamics , which only changes the connguration at a randomly chosen vertex in each step, has mixing time O(n log n) when < 2 ?2 for… (More)

- Thomas P. Hayes, Eric Vigoda
- SODA
- 2005

We present an improved coupling technique for analyzing the mixing time of Markov chains. Using our technique, we simplify and extend previous results for sampling colorings and independent sets. Our approach uses properties of the stationary distribution to avoid worst-case configurations which arise in the traditional approach.As an application, we show… (More)

- Christian Borgs, Jennifer T. Chayes, +4 authors Van H. Vu
- FOCS
- 1999

We study two widely used algorithms, Glauber dynamics and the Swendsen-Wang algorithm, on rectangular subsets of the hypercubic lattice Z d. We prove that under certain circumstances, the mixing time in a box of side length L with periodic boundary conditions can be exponential in L d−1. In other words, under these circumstances, the mixing in these widely… (More)

- Thomas P. Hayes, Eric Vigoda
- FOCS
- 2003

We study a simple Markov chain, known as the Glauber dynamics , for randomly sampling (proper) k-colorings of an input graph G on n vertices with maximum degree ∆ and girth g. We prove the Glauber dynamics is close to the uniform distribution after O(n log n) steps whenever k > (1 +)∆, for all > 0, assuming g ≥ 11 and ∆ = Ω(log n). The best previously known… (More)

- Andreas Galanis, Daniel Stefankovic, Eric Vigoda
- Combinatorics, Probability & Computing
- 2016

Recent inapproximability results of Sly (2010), together with an approximation algorithm presented by Weitz (2006) establish a beautiful picture for the computational complexity of approximating the partition function of the hard-core model. Let λc(T∆) denote the critical activity for the hard-model on the infinite ∆-regular tree. Weitz presented an FPTAS… (More)