Learn More
We have derived the space-time Green's function for the diffusion equation in layered turbid media, starting from the case of a planar interface between two random scattering media. This new approach for working directly in real space permits highly efficient numerical processing, which is a decisive criterion for the feasibility of the inverse problem in(More)
PURPOSE A difficulty in nonmuscle invasive bladder cancers is the diagnosis of flat and small lesions during white light cystoscopy. We assessed a prototype that measures ultraviolet laser induced autofluorescence for endoscopic detection of nonmuscle invasive bladder cancer. MATERIALS AND METHODS We compared spectroscopic results with histological(More)
Routine clinical detection of precancerous lesions by laser-inducedautofluorescence was recently demonstrated in several medicalfields. This technique is based on the analysis of complex spectrawith overlapping broad structures. However, in biological tissues, scattering and absorption are wavelength dependent, and the observedfluorescence signals are(More)
The aim of the present experiment was to study the influence of +Gz acceleration (head-to-foot inertial forces) onset on cerebral oxygenation changes (cerebral oxy- and deoxy-hemoglobin) and cerebral blood volume (CBV) in order to evaluate the role of cerebral hypoxemia and ischemia in the appearance of +Gz-induced loss of consciousness (G-LOC). We used(More)
To determine the external force that induces maximal deoxygenation of brachioradialis muscle 32 trained male subjects maintained isometric contractions using the elbow flexor muscles up to the limit time (isotonic part of the isometric contraction, IIC) and beyond that time for 120 s (anisotonic part of the isometric contraction). During IIC each subject(More)
We evaluate the ultimate transverse spatial resolution that can be expected in Diffuse Optical Tomography, in the configuration of projection imaging. We show how such a performance can be approached using time-resolved measurements and reasonable assumptions, in the context of a linearized diffusion model.
We report what is to our knowledge the first observation of a time-resolved diffusing wave spectroscopy (DWS) signal recorded by transillumination through a thick turbid medium: the DWS signal is measured for a fixed photon transit time, which opens the possibility of improving the spatial resolution. This technique could find biomedical applications,(More)
We presented theoretical and experimental demonstrations of the possibilities of performing time-resolved diffusing wave spectroscopy: We successfully registered field fluctuations for selected photon path lengths that can surpass 300 transport mean free paths. Such performance opens new possibilities for biomedical optics applications.
We show how time-resolved measurements of the diffuse light transmitted through a thick scattering slab can be performed with a standard CCD camera, thanks to an interferometric protocol. Time-resolved correlations measured at a fixed photon transit time are also presented. The high number of pixels of the camera allows us to attain a quite good sensitivity(More)