Learn More
The spatial and temporal properties of single neurons were investigated in area 19 of the cat. We evaluated the matching of binocular receptive field properties with regard to the respective strength of the ipsilateral and contralateral inputs. Results indicate that most cells in area 19 are well tuned to spatial and temporal frequencies and exhibit(More)
The human supratemporal plane contains the primary as well as several other auditory areas. We have investigated the intrinsic connectivity of these areas by means of antero- and retrograde labelling with the carbocyanin dye DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate). A total of 30 injections was placed in both hemispheres of(More)
The human primary auditory cortex (AI) is surrounded by several other auditory areas, which can be identified by cyto-, myelo- and chemoarchitectonic criteria. We report here on the pattern of calcium-binding protein immunoreactivity within these areas. The supratemporal regions of four normal human brains (eight hemispheres) were processed histologically,(More)
Electrophysiological recordings were carried out in the callosal recipient zone of area 19 in normal and split-chiasm cats and, for comparison purposes, at the border of areas 17 and 18 of split-chiasm cats. The influences of retinothalamic and callosal inputs on a single cortical neurons were thereby evaluated. Extracellular recordings of single cells were(More)
The receptive field properties of single units were assessed in area 21b of the cat visual cortex. Visual cells in this area were binocular and showed relatively large receptive fields. Most cells were strongly sensitive to the direction of drifting gratings. The mean value of the half-widths of the direction tuning curves (32 degrees ) suggests broader(More)
Interaural intensity and time differences (IID and ITD) are two binaural auditory cues for localizing sounds in space. This study investigated the spatio-temporal brain mechanisms for processing and integrating IID and ITD cues in humans. Auditory-evoked potentials were recorded, while subjects passively listened to noise bursts lateralized with IID, ITD or(More)
The spatial and temporal selectivities of single neurons in area 21a of the adult cat were investigated using sinusoidal gratings. Optimal spatial frequencies and visual acuity (high cut-off frequency) were fairly low and spatial bandwidth was mainly narrow. Contrast threshold was generally low but a substantial number of cells were only excited by high(More)
Auditory spatial representations are likely encoded at a population level within human auditory cortices. We investigated learning-induced plasticity of spatial discrimination in healthy subjects using auditory-evoked potentials (AEPs) and electrical neuroimaging analyses. Stimuli were 100 ms white-noise bursts lateralized with varying interaural time(More)
The superior colliculus (SC) is believed to play an important role in sensorimotor integration and orienting behavior. It is classically divided into superficial layers predominantly containing visual neurons and deep layers containing multisensory and premotor neurons. Investigations of intrinsic connectivity within the SC in non-human species initially(More)
Auditory scene analysis requires the accurate encoding and comparison of the perceived spatial positions of sound sources. The electrophysiological correlates of auditory spatial discrimination and their relationship to performance accuracy were studied in humans by applying electrical neuroimaging analyses to auditory evoked potentials (AEPs) that were(More)