Eric T Reifenstein

Learn More
When a rat moves, grid cells in its entorhinal cortex become active in multiple regions of the external world that form a hexagonal lattice. As the animal traverses one such "firing field," spikes tend to occur at successively earlier theta phases of the local field potential. This phenomenon is called phase precession. Here, we show that spike phases(More)
As a rat moves, grid cells in its entorhinal cortex (EC) discharge at multiple locations of the external world, and the firing fields of each grid cell span a hexagonal lattice. For movements on linear tracks, spikes tend to occur at successively earlier phases of the theta-band filtered local field potential during the traversal of a firing field - a(More)
UNLABELLED The identity of phase-precessing cells in the entorhinal cortex is unknown. Here, we used a classifier derived from cell-attached recordings to separate putative pyramidal cells and putative stellate cells recorded extracellularly in layer II of the medial entorhinal cortex in rats. Using a novel method to identify single runs as temporal periods(More)
In the medial superior olive (MSO), neurons compute the azimuthal location of low frequency sound sources by a temporally precise mechanism of coincidence detection. This type of neuronal processing has been subject to various model predictions based on in vivo and in vitro data obtained in mammalian MSO and an avian analog brain structure. It is assumed(More)
When a rat explores its environment, grid cells in the medial entorhinal cortex show increased activity at specific locations that constitute a regular hexagonal grid. As the rat enters and progresses through one of these “grid fields” on a linear track, spikes occur at successively earlier phases in the LFP’s theta rhythm. This phenomenon is called phase(More)
  • 1