Eric T. Baumgartner

Learn More
We overview our recent research on planetary mobility. Products of this effort include the Field Integrated Design & Operations rover (FIDO), Sample Return Rover (SRR), reconfigurable rover units that function as an All Terrain Explorer (ATE), and a multi-Robot Work Crew of closely cooperating rovers (RWC). FIDO rover is an advanced technology prototype;(More)
Spirit is one of two rovers that landed on Mars in January 2004 as part of NASA's Mars Exploration Rover mission. As of July 2005, Spirit has traveled over 4.5 kilometers across the Martian surface while investigating rocks and soils, digging trenches to examine subsurface materials, and climbing hills to reach outcrops of bedrock. Originally designed to(More)
During Mars Exploration Rover (MER) surface operations, the scientific data gathered by the in situ instrument suite has been invaluable with respect to the discovery of a significant water history at Meridiani Planum and the hint of water processes at work in Gusev Crater. Specifically, the ability to perform precision manipulation from a mobile platform(More)
This paper describes recent work undertaken at the Jet Propulsion Laboratory in Pasadena, CA in the area of increased rover autonomy for planetary surface operations. The primary vehicle for this work is the Field Integrated, Design and Operations (FIDO) rover. The FIDO rover is an advanced technology prototype that is a terrestrial analog of the Mars(More)
This paper describes the development of advanced rover navigation and manipulation techniques for use by NASA's Sample Return Rover. These techniques include an algorithm for estimating the change in the rover's position and orientation by registering successive range maps from the rover's hazard avoidance stereo camera pair and the fusion of this(More)
This paper describes the development of a two-tier state estimation approach for NASA/JPL’s FIDO Rover that utilizes wheel odometry, inertial measurement sensors, and a sun sensor to generate accurate estimates of the rover’s position and attitude throughout a rover traverse. The state estimation approach makes use of a linear Kalman filter to estimate the(More)
Planetary rovers enable good sample selection and retrieval for Mars sample return missions. After landing, the rovers search for the best possible scientific samples in the region around a lander, and they return these selected samples to an ascent vehicle that launches the samples into Mars orbit. To streamline the search for, the acquisition, and the(More)
We overview our recent development and testing of the FIDO rover, an advanced technology prototype for long range mobile planetary science. The current rover is capable of semi-autonomously navigating to, and gathering multi-modal science data from widely dispersed rock-soil targets of interest. Commands are input to FIDO through a high-level “web”(More)
Since landing on the Meridiani Planum region of Mars in January 2004, the Mars exploration rover (MER) vehicle named Opportunity has been sending back pictures taken from several different craters that would provide evidence that the region did indeed have a watery past. This paper details the experience of driving Opportunity through this alien landscape(More)
Given ambitious mission objectives and long delay times between command-uplink/datadownlink sessions, increased autonomy is required for planetary rovers. Speci cally NASA's planned 2003 and 2005 Mars rover missions must incorporate increased autonomy if their desired mission goals are to be realized. Increased autonomy, including autonomous path planning(More)