Learn More
The field of metabolic engineering has the potential to produce a wide variety of chemicals in both an inexpensive and ecologically-friendly manner. Heterologous expression of novel combinations of enzymes promises to provide new or improved synthetic routes towards a substantially increased diversity of small molecules. Recently, we constructed a synthetic(More)
D-glucaric acid has been explored for a myriad of potential uses, including biopolymer production and cancer treatment. A biosynthetic route to produce D-glucaric acid from glucose has been constructed in Escherichia coli (Moon et al., 2009b), and analysis of the pathway revealed myo-inositol oxygenase (MIOX) to be the least active enzyme. To increase(More)
The use of lignocellulosic biomass as a feedstock for microbial fermentation processes presents an opportunity for increasing the yield of bioproducts derived directly from glucose. Lignocellulosic biomass consists of several fermentable sugars, including glucose, xylose, and arabinose. In this study, we investigate the ability of an E. coli Δpgi Δzwf(More)
  • 1