Learn More
In this paper, we focus on statistical region-based active contour models where image features (e.g. intensity) are random variables whose distribution belongs to some parametric family (e.g. exponential) rather than confining ourselves to the special Gaussian case. In the framework developed in this paper, we consider the general case of region-based terms(More)
BACKGROUND Coronary artery disease (CAD) patients are at risk for life-threatening ventricular arrhythmias (VA) related to scar tissue. Late gadolinium enhancement cardiovascular magnetic resonance (LGE-CMR) can accurately identify myocardial scar extent. It has been shown that scar extent, particularly scar transmurality, percent scar and scar mass, are(More)
In this paper, we propose to combine formally noise and shape priors in region-based active contours. On the one hand, we use the general framework of exponential family as a prior model for noise. On the other hand, translation and scale invariant Legendre moments are considered to incorporate the shape prior (e.g. fidelity to a reference shape). The(More)
We propose a new approach for the generation of synthetic but visually realistic time series of cardiac images based on an electromechanical model of the heart and real clinical 4-D image sequences. This is achieved by combining three steps. The first step is the simulation of a cardiac motion using an electromechanical model of the heart and the(More)
Despite advances in both medical image analysis and in-tracardiac electrophysiological mapping technology, the understanding of cardiac mechano-electrical coupling is still incomplete. This knowledge is of high interest since it would help estimating the cardiac electrophysiol-ogy function from the analysis of widely available cardiac images, such as 3D(More)
In this paper, we propose to create a rich database of synthetic time series of 3D echocardiography (US) images using simulations of a cardiac electromechanical model, in order to study the relationship between electrical disorders and kinematic patterns visible in medical images. From a real 4D sequence, a software pipeline is applied to create several(More)
—Quantification of cardiac deformation and strain with 3D ultrasound takes considerable research efforts. Nevertheless , a widespread use of these techniques in clinical practice is still held back due to the lack of a solid verification process to quantify and compare performance. In this context, the use of fully synthetic sequences has become an(More)
This article presents a new method for motion and strain estimation in 3D echocardiography, called Sparse Demons, along with quantitative and qualitative evaluations from a dataset of synthetic ultrasound sequences. Motion estimation is based on a fast demons-like algorithm focusing on myocardial tissue. Synthetic 3D ultrasound images were generated by(More)
BACKGROUND Echocardiographic ratio of peak tricuspid regurgitant velocity to the right ventricular outflow tract time-velocity integral (TRV/TVI rvot) was presented as a reliable non-invasive method of estimating pulmonary vascular resistance (PVR). Studies using this technique in patients with moderate to high PVR are scarce. Left ventricular outflow tract(More)