Learn More
In this paper, we focus on statistical region-based active contour models where image features (e.g. intensity) are random variables whose distribution belongs to some parametric family (e.g. exponential) rather than confining ourselves to the special Gaussian case. In the framework developed in this paper, we consider the general case of region-based terms(More)
BACKGROUND Coronary artery disease (CAD) patients are at risk for life-threatening ventricular arrhythmias (VA) related to scar tissue. Late gadolinium enhancement cardiovascular magnetic resonance (LGE-CMR) can accurately identify myocardial scar extent. It has been shown that scar extent, particularly scar transmurality, percent scar and scar mass, are(More)
This paper evaluates five 3D ultrasound tracking algorithms regarding their ability to quantify abnormal deformation in timing or amplitude. A synthetic database of B-mode image sequences modeling healthy, ischemic and dyssynchrony cases was generated for that purpose. This database is made publicly available to the community. It combines recent advances in(More)
In this paper, we propose to combine formally noise and shape priors in region-based active contours. On the one hand, we use the general framework of exponential family as a prior model for noise. On the other hand, translation and scale invariant Legendre moments are considered to incorporate the shape prior (e.g. fidelity to a reference shape). The(More)
We propose a new approach for the generation of synthetic but visually realistic time series of cardiac images based on an electromechanical model of the heart and real clinical 4-D image sequences. This is achieved by combining three steps. The first step is the simulation of a cardiac motion using an electromechanical model of the heart and the(More)
Despite advances in both medical image analysis and in-tracardiac electrophysiological mapping technology, the understanding of cardiac mechano-electrical coupling is still incomplete. This knowledge is of high interest since it would help estimating the cardiac electrophysiol-ogy function from the analysis of widely available cardiac images, such as 3D(More)
In this paper, we propose to create a rich database of synthetic time series of 3D echocardiography (US) images using simulations of a cardiac electromechanical model, in order to study the relationship between electrical disorders and kinematic patterns visible in medical images. From a real 4D sequence, a software pipeline is applied to create several(More)
This article presents a new method for motion and strain estimation in 3D echocardiography, called Sparse Demons, along with quantitative and qualitative evaluations from a dataset of synthetic ultrasound sequences. Motion estimation is based on a fast demons-like algorithm focusing on myocardial tissue. Synthetic 3D ultrasound images were generated by(More)
BACKGROUND AND PURPOSE Pulmonary embolism is thought to be associated with a small but definite risk of paradoxical embolism in patients with a patent foramen ovale (PFO). Although neurological complications are infrequent, the incidence of clinically silent brain infarction is unknown. We assessed the rate of clinically apparent and silent cerebral(More)