Learn More
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive which presents an environmental hazard as a major land and groundwater contaminant. Rhodococcus rhodochrous strain 11Y was isolated from explosive contaminated land and is capable of degrading RDX when provided as the sole source of nitrogen for growth. Products of RDX degradation in(More)
A representative of a group of related Rhodococcus arsenic resistance plasmids was characterized, locating the resistance genes and regions influencing host range and controlling copy number. This information, together with identification of antibiotic resistance determinants to replace the arsenic marker was used to construct Rhodococcus-Escherichia coli(More)
The enzymes responsible for the degradation of isopropylbenzene (IPB) and co-oxidation of trichloroethene (TCE) by Rhodococcus erythropolis BD2 are encoded by the linear plasmid pBD2. Fragments containing IPB catabolic genes were cloned from pBD2 and the nucleotide sequence was determined. By means of database searches and expression of the cloned genes in(More)
Mycobacterium smegmatis inactivates rifampin by ribosylating this antibiotic. The gene responsible for this ability was cloned and was shown to confer low-level resistance to this antibiotic (MIC increase, about 12-fold) in related organisms. A 600-bp subclone responsible for ribosylating activity and resistance carried an open reading frame of 429 bp.(More)
The 30S ribosomal subunits derived from Escherichia coli TA114, a a temperature-sensitive mutant lacking ribosomal protein S20, were shown to be defective in two ways: (a) they have a reduced capacity for association with the 50S ribosomal subunit which results in the impairment of most of the functions requiring a coordinated interaction between the two(More)
A DNA clone from Rhodococcus equi conferring low-level rifampin resistance through the ability to inactivate this antibiotic via its decomposition was identified. The iri (inactivation of rifampin) gene consisted of an open reading frame of 1,437 bp encoding a 479-amino-acid sequence strongly resembling those of monooxygenases acting upon phenolic compounds(More)
The function of protein L1 in protein biosynthesis has been examined using ribosomes from two independently derived mutants of Escherichia coli, both of which lacked this protein. In systems in vitro with phage MS2 RNA or poly(U) as message, the mutant ribosomes showed from 40% to 60% of the activity of wild-type ribosomes. The reduction in activity was(More)
Ribosomal L10-L7/L12 protein complex and L11 bind to a highly conserved RNA region around position 1070 in domain II of 23 S rRNA and constitute a part of the GTPase-associated center in Escherichia coli ribosomes. We replaced these ribosomal proteins in vitro with the rat counterparts P0-P1/P2 complex and RL12, and tested them for ribosomal activities. The(More)
Previously, we have shown that the ribosomal protein L24 is one of two assembly-initiator proteins. L24 is essential for early steps of the assembly of the 50S ribosomal subunit but it is not involved in both the late assembly and the ribosomal functions. Surprisingly, an E. coli mutant (TA109-130) exists which lacks L24. This apparent paradox is analyzed(More)
A mutation in the infA gene encoding initiation factor 1 (IF1) gives rise to a cold-sensitive phenotype. An Escherichia coli strain with this mutation was used as a tool to select for second-site suppressors that compensate for the cold sensitivity and map specifically to rRNA. Several suppressor mutants with altered 16S rRNA that partially restore growth(More)