Learn More
Hyperkalemic periodic paralysis (HyperKPP) produces myotonia and attacks of muscle weakness triggered by rest after exercise or by K+ ingestion. We introduced a missense substitution corresponding to a human familial HyperKPP mutation (Met1592Val) into the mouse gene encoding the skeletal muscle voltage-gated Na+ channel NaV1.4. Mice heterozygous for this(More)
It is intuitive to speculate that nutrient availability may influence differentiation of mammalian cells. Nonetheless, a comprehensive complement of the molecular determinants involved in this process has not been elucidated yet. Here, we have investigated how nutrients (glucose) affect skeletal myogenesis. Glucose restriction (GR) impaired differentiation(More)
Spinal cord injury causes secondary biochemical changes leading to neuronal cell death. To clarify the molecular basis of this delayed injury, we subjected rats to spinal cord injury and identified gene expression patterns by high-density oligonucleotide arrays (8,800 genes studied) at 30 minutes, 4 hours, 24 hours, or 7 days after injury (total of 26 U34A(More)
Strenuous exercise results in damage to skeletal muscle that is manifested in delayed muscle pain, prolonged strength loss, and increases in muscle proteins in the blood, especially creatine kinase (CK) and myoglobin (Mb). Some individuals experience profound changes in these variables in response to standard laboratory exercise or recreational activities.(More)
PURPOSE This study assessed variability in muscle size and strength changes in a large cohort of men and women after a unilateral resistance training program in the elbow flexors. A secondary purpose was to assess sex differences in size and strength changes after training. METHODS Five hundred eighty-five subjects (342 women, 243 men) were tested at one(More)
Sir2 is a NAD(+)-dependent histone deacetylase that controls gene silencing, cell cycle, DNA damage repair, and life span. Prompted by the observation that the [NAD(+)]/[NADH] ratio is subjected to dynamic fluctuations in skeletal muscle, we have tested whether Sir2 regulates muscle gene expression and differentiation. Sir2 forms a complex with the(More)
BACKGROUND We provide a systematic study of the sources of variability in expression profiling data using 56 RNAs isolated from human muscle biopsies (34 Affymetrix MuscleChip arrays), and 36 murine cell culture and tissue RNAs (42 Affymetrix U74Av2 arrays). RESULTS We studied muscle biopsies from 28 human subjects as well as murine myogenic cell(More)
Novel eccentric (lengthening contraction) exercise typically results in muscle damage, which manifests as prolonged muscle dysfunction, delayed onset muscle soreness, and leakage of muscle proteins into circulation. There is a large degree of variability in the damage response of individuals to eccentric exercise, with higher responders at risk for(More)
The alpha-actinin 3 (ACTN3) gene encodes a protein of the Z disk of myofibers, and a polymorphism of ACTN3 results in complete loss of the protein. The ACTN3 genotype (R577X) has been found to be associated with performance in Australian elite athletes (Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, and North K. Am J Hum Genet 73: 627-631,(More)
Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also(More)